这是一篇来自已证抗体库的有关人类 β1整合素 (beta1 integrin) 的综述,是根据266篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合β1整合素 抗体。
β1整合素 同义词: CD29; FNRB; GPIIA; MDF2; MSK12; VLA-BETA; VLAB

其他
  • 流式细胞仪; 国内马; 1:100; 图 1c
β1整合素抗体(BioLegend, TS2/16)被用于被用于流式细胞仪在国内马样本上浓度为1:100 (图 1c). Animals (Basel) (2020) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR16895)
  • 免疫印迹; 大鼠; 1:2000; 图 1e
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179471)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 1e). Int J Mol Sci (2022) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 图 3e
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab202641)被用于被用于免疫细胞化学在人类样本上 (图 3e). Theranostics (2022) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 图 s1h
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫细胞化学在人类样本上 (图 s1h). Circulation (2021) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于流式细胞仪在人类样本上. Theranostics (2021) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 1:200; 图 2k
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2k). Nat Commun (2021) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类; 1:1000; 图 8e
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8e). J Cell Biol (2021) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在人类样本上 (图 4c). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(EPR1040Y)
  • 免疫印迹; 人类; 1:1000; 图 5d
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab134179)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncogene (2021) ncbi
小鼠 单克隆(P5D2)
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, P5D2)被用于. Angiogenesis (2021) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类; 1:2000; 图 2c
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2c). Cancers (Basel) (2020) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类; 1:1000; 图 2e
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, 12G10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). elife (2020) ncbi
小鼠 单克隆(P5D2)
  • 免疫组化; 人类; 1:100; 图 4g
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab24693)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4g). Dev Cell (2020) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 图 5i
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, 12G10)被用于被用于免疫细胞化学在人类样本上 (图 5i). Nat Commun (2020) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类; 1:500; 图 6f
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, P5D2)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6f). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(EPR1040Y)
  • 免疫细胞化学; 人类; 1:200; 图 2c
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab134179)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c). Stem Cell Res Ther (2019) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 1:100; 图 1a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1a). J Cell Sci (2019) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类; 1:500; 图 s4a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab24693)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s4a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR16895)
  • 免疫印迹; 人类; 1:1000; 图 1s1a
  • 免疫印迹; 小鼠; 1:1000; 图 1s1a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179471)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1s1a). elife (2019) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类; 图 s4e, s2e
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在人类样本上 (图 s4e, s2e). Cell (2019) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 图 5c
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫细胞化学在人类样本上 (图 5c). Neuron (2018) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类; 图 s5c-d
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在人类样本上 (图 s5c-d). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(EPR1040Y)
  • 免疫印迹; 仓鼠; 1:500; 图 1L
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab134179)被用于被用于免疫印迹在仓鼠样本上浓度为1:500 (图 1L). J Cell Biol (2017) ncbi
小鼠 单克隆(12G10)
  • 抑制或激活实验; 人类; 图 1a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, 12G10)被用于被用于抑制或激活实验在人类样本上 (图 1a). Mol Biol Cell (2017) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类; 图 5
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, 12G10)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EPR16895)
  • 流式细胞仪; 大鼠; 图 1
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179471)被用于被用于流式细胞仪在大鼠样本上 (图 1). Am J Transl Res (2016) ncbi
domestic rabbit 单克隆(EPR16895)
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179471)被用于被用于免疫印迹在小鼠样本上 (图 7a). JCI Insight (2016) ncbi
domestic rabbit 单克隆(EPR16896)
  • 免疫沉淀; 人类; 1:1000; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 4d
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179472)被用于被用于免疫沉淀在人类样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(EPR16895)
  • 免疫印迹; 人类; 1:1000; 图 10
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179471)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 10). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 小鼠; 图 5d
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在小鼠样本上 (图 5d). Mucosal Immunol (2017) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
小鼠 单克隆(12G10)
  • 免疫组化; 人类; 1:200; 图 4d
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, 12G10)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4d). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(EPR16895)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s4
  • 免疫印迹; 人类; 1:2000; 图 s1
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab179471)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s4) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 s1). Oncotarget (2016) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类; 7.5 ug/ml; 图 s6a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于流式细胞仪在人类样本上浓度为7.5 ug/ml (图 s6a). Exp Cell Res (2016) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫组化; 大鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司β1整合素抗体(abcam, EP1041Y)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 图 s3
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, Ab30394)被用于被用于免疫细胞化学在人类样本上 (图 s3). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫组化; 人类; 1:50; 图 4a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4a). Biomaterials (2016) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类; 图 5A
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫印迹在人类样本上 (图 5A). Oncotarget (2016) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 图 2f
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab24693)被用于被用于抑制或激活实验在人类样本上 (图 2f). Oncotarget (2015) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类; 1:500; 图 4
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 1:300
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Biomaterials (2015) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫组化-石蜡切片; 人类; 1:1000
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 1:300; 图 2
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, mab12G10)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(EPR1040Y)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab134179)被用于被用于免疫细胞化学在人类样本上. Int J Mol Sci (2014) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在人类样本上. Int J Mol Sci (2014) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab24693)被用于被用于免疫细胞化学在人类样本上. Int J Mol Sci (2014) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫细胞化学; 小鼠; 1:2500; 图 3
  • 免疫印迹; 小鼠; 1:500; 图 6
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, 52971)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2500 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Cell Cycle (2014) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类; 图 8d
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab30394)被用于被用于流式细胞仪在人类样本上 (图 8d). Exp Cell Res (2015) ncbi
domestic rabbit 单克隆(EPR1040Y)
  • 免疫细胞化学; 大鼠; 1:50; 图 7l
艾博抗(上海)贸易有限公司β1整合素抗体(Epitomics, 2288-1)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 7l). Am J Pathol (2015) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 5 ug/ml
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab24693)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml. Oncogene (2015) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab52971)被用于被用于免疫印迹在人类样本上 (图 1a). Biomaterials (2014) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司β1整合素抗体(abcam, ab52971)被用于被用于免疫印迹在人类样本上. J Biomater Sci Polym Ed (2014) ncbi
仓鼠 单克隆(HM beta 1-1)
  • 流式细胞仪; 小鼠; 1:25
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, ab36219)被用于被用于流式细胞仪在小鼠样本上浓度为1:25. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(EP1041Y)
  • 免疫组化-石蜡切片; 人类; 1:1000
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, AB52971)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Acta Biomater (2014) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司β1整合素抗体(Abcam, P5D2)被用于被用于免疫细胞化学在小鼠样本上. Oncogene (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-4)
  • 免疫印迹; 人类; 1:2000; 图 6a
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-374429)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). iScience (2022) ncbi
小鼠 单克隆(P5D2)
圣克鲁斯生物技术β1整合素抗体(Santa Cruz biotechnology, P5D2)被用于. Front Immunol (2021) ncbi
小鼠 单克隆(K-20)
  • 免疫细胞化学; 人类; 图 1g
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-18887)被用于被用于免疫细胞化学在人类样本上 (图 1g). EMBO J (2021) ncbi
小鼠 单克隆(TS2/16)
  • 免疫印迹; 人类; 1:200; 图 4c
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-53711)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4c). Nat Commun (2021) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类; 1:200; 图 4e
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-13590)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4e). Nat Commun (2021) ncbi
小鼠 单克隆(K-20)
  • 免疫细胞化学; 人类; 图 s1a
圣克鲁斯生物技术β1整合素抗体(Santa, sc-18887)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(102DF5)
  • 免疫印迹; 人类; 1:1000; 图 3c
  • 免疫印迹; 仓鼠; 1:1000; 图 3c
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-73610)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c) 和 被用于免疫印迹在仓鼠样本上浓度为1:1000 (图 3c). Exp Cell Res (2019) ncbi
小鼠 单克隆(12G10)
  • 流式细胞仪; 人类; 图 s2c
圣克鲁斯生物技术β1整合素抗体(Santa Cruz Biotechnology Inc, Sc-59827)被用于被用于流式细胞仪在人类样本上 (图 s2c). Cell (2018) ncbi
小鼠 单克隆(TS2/16)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术β1整合素抗体(SantaCruz Biotechnology, TS2/16)被用于被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2017) ncbi
小鼠 单克隆(K-20)
  • 免疫印迹; 人类; 图 s5
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-18887)被用于被用于免疫印迹在人类样本上 (图 s5). Nat Commun (2017) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 图 2e
圣克鲁斯生物技术β1整合素抗体(SantaCruz, P5D2)被用于被用于抑制或激活实验在人类样本上 (图 2e). Sci Rep (2017) ncbi
小鼠 单克隆(102DF5)
  • 免疫印迹; 人类; 1:1500; 图 s2a
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, SC-73610)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 s2a). J Clin Invest (2017) ncbi
小鼠 单克隆(JB1B)
  • 流式细胞仪; 人类; 图 1c
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-59829)被用于被用于流式细胞仪在人类样本上 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(4B7R)
  • 免疫印迹; 人类; 1:200; 图 4
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-9970)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 4
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-53711)被用于被用于流式细胞仪在人类样本上 (图 4). Cell Death Dis (2016) ncbi
小鼠 单克隆(TS2/16)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-53711)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 人类; 1:200; 图 5a
圣克鲁斯生物技术β1整合素抗体(SantaCruz, sc-374429)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(A-4)
  • 免疫组化; 大鼠; 1:250; 图 st1
  • 免疫组化-自由浮动切片; 家羊; 1:250
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, SC-374429)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 st1) 和 被用于免疫组化-自由浮动切片在家羊样本上浓度为1:250. Endocrinology (2016) ncbi
小鼠 单克隆(4B7R)
  • 免疫组化-石蜡切片; 人类; 图 2
圣克鲁斯生物技术β1整合素抗体(santa Cruz, sc-9970)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(TS2/16)
  • 免疫细胞化学; 人类; 1:500; 图 3
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-53711)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(K-20)
  • 免疫细胞化学; 人类; 1:50; 图 3
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-18887)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-374429)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(P5D2)
  • 免疫印迹; 人类; 1:200; 图 1b
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-13590)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1b). Mol Med Rep (2015) ncbi
小鼠 单克隆(Y9A2)
  • 流式细胞仪; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, Y9A2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(K-20)
  • 流式细胞仪; 小鼠; 图 2
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc18887)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(JB1B)
  • 免疫沉淀; 小鼠; 图 3
  • 免疫细胞化学; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 9
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc59829)被用于被用于免疫沉淀在小鼠样本上 (图 3), 被用于免疫细胞化学在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 9). Mol Biol Cell (2015) ncbi
小鼠 单克隆(P1H5)
  • 免疫印迹; 人类; 1:200; 图 4
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-13546)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(4B7R)
  • 流式细胞仪; 人类; 图 1
圣克鲁斯生物技术β1整合素抗体(santa Cruz, sc-9970)被用于被用于流式细胞仪在人类样本上 (图 1). Biomed Res Int (2015) ncbi
小鼠 单克隆(102DF5)
  • 免疫细胞化学; 人类; 1:200; 图 5
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-73610)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(4B7R)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz Biotechnology, SC-9970)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz Biotechnology, sc-374429)被用于被用于免疫印迹在人类样本上. Colloids Surf B Biointerfaces (2015) ncbi
小鼠 单克隆(K-20)
  • 流式细胞仪; 人类; 图 8d
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-18887)被用于被用于流式细胞仪在人类样本上 (图 8d). Exp Cell Res (2015) ncbi
小鼠 单克隆(A-4)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-374429)被用于被用于免疫细胞化学在人类样本上. Int J Med Sci (2014) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz Biotechnology, sc-59827)被用于被用于免疫印迹在人类样本上. J Periodontal Res (2015) ncbi
小鼠 单克隆(12G10)
  • 抑制或激活实验; 人类; 2 ug 1:25
圣克鲁斯生物技术β1整合素抗体(Santa Cruz Biotechnology, sc-59827)被用于被用于抑制或激活实验在人类样本上浓度为2 ug 1:25. Biomacromolecules (2014) ncbi
小鼠 单克隆(4B7R)
  • 免疫细胞化学; 大鼠; 1:100
圣克鲁斯生物技术β1整合素抗体(Santa, Sc-9970)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Microcirculation (2014) ncbi
小鼠 单克隆(4B7R)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术β1整合素抗体(Santa, 4B7R)被用于被用于免疫组化在人类样本上浓度为1:100. Gut (2015) ncbi
小鼠 单克隆(K-20)
  • 流式细胞仪; 人类
圣克鲁斯生物技术β1整合素抗体(Santa Cruz, sc-18887)被用于被用于流式细胞仪在人类样本上. Biomaterials (2014) ncbi
BioLegend
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 1:20; 图 1a
BioLegendβ1整合素抗体(BioLegend, 303004)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1a). World J Stem Cells (2022) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 s1b
BioLegendβ1整合素抗体(Biolegend, 303004)被用于被用于流式细胞仪在人类样本上 (图 s1b). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
BioLegendβ1整合素抗体(BioLegend, 303007)被用于被用于流式细胞仪在人类样本上. Front Immunol (2022) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 1:1000
BioLegendβ1整合素抗体(BioLegend, 303015)被用于被用于流式细胞仪在人类样本上浓度为1:1000. J Cell Biol (2021) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 国内马; 1:100; 图 1c
BioLegendβ1整合素抗体(BioLegend, TS2/16)被用于被用于流式细胞仪在国内马样本上浓度为1:100 (图 1c). Animals (Basel) (2020) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 1f
BioLegendβ1整合素抗体(Biolegend, 303004)被用于被用于流式细胞仪在人类样本上 (图 1f). Cell Res (2020) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 s1a
BioLegendβ1整合素抗体(BioLegend, 303003)被用于被用于流式细胞仪在人类样本上 (图 s1a). Stem Cell Reports (2020) ncbi
小鼠 单克隆(TS2/16)
  • 免疫细胞化学; 小鼠; 图 s5d
BioLegendβ1整合素抗体(BioLegend, 303002)被用于被用于免疫细胞化学在小鼠样本上 (图 s5d). Science (2020) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 s3
BioLegendβ1整合素抗体(Biolegend, 303007)被用于被用于流式细胞仪在人类样本上 (图 s3). Leukemia (2019) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 1a
BioLegendβ1整合素抗体(Biolegend, 303002)被用于被用于流式细胞仪在人类样本上 (图 1a). Cell (2018) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 4s1
BioLegendβ1整合素抗体(BioLegend, 303017)被用于被用于流式细胞仪在人类样本上 (图 4s1). elife (2018) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 1b
BioLegendβ1整合素抗体(Biolegend, TS2/16)被用于被用于流式细胞仪在人类样本上 (图 1b). J Cell Sci (2018) ncbi
小鼠 单克隆(TS2/16)
BioLegendβ1整合素抗体(BioLegend, 303015)被用于. Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
BioLegendβ1整合素抗体(biolegend, TS2/16)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 2a
BioLegendβ1整合素抗体(Biolegend, 303004)被用于被用于流式细胞仪在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 7d
BioLegendβ1整合素抗体(BioLegend, P5D2)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 7d). J Clin Invest (2016) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 小鼠; 1:300; 图 6
BioLegendβ1整合素抗体(BioLegend, TS2/16)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(Y9A2)
  • 免疫印迹; 小鼠; 20 ug/ml; 图 6
BioLegendβ1整合素抗体(Biolegend, Y9A2)被用于被用于免疫印迹在小鼠样本上浓度为20 ug/ml (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(Y9A2)
  • 流式细胞仪; 人类; 图 2a
BioLegendβ1整合素抗体(BioLegend, Y9A2)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
BioLegendβ1整合素抗体(Biolegend, TS2/16)被用于被用于流式细胞仪在人类样本上. J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(TS2/16)
  • 免疫细胞化学; 人类; 1:200; 图 2
BioLegendβ1整合素抗体(BioLegend, 303002)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). J Biol Chem (2015) ncbi
小鼠 单克隆(Y9A2)
  • 流式细胞仪; 人类
BioLegendβ1整合素抗体(Biolegend, Y9A2)被用于被用于流式细胞仪在人类样本上. Matrix Biol (2015) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
BioLegendβ1整合素抗体(Biolegend, TS2/16)被用于被用于流式细胞仪在人类样本上. Nanomedicine (2014) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
BioLegendβ1整合素抗体(BioLegend, TS2/16)被用于被用于流式细胞仪在人类样本上. Mol Biol Cell (2014) ncbi
赛默飞世尔
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 1s1a
赛默飞世尔β1整合素抗体(Ebioscience, 11-0299-41)被用于被用于流式细胞仪在人类样本上 (图 1s1a). elife (2020) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 家羊; 图 2b
赛默飞世尔β1整合素抗体(eBioscience, TS2/16)被用于被用于流式细胞仪在家羊样本上 (图 2b). BMC Vet Res (2020) ncbi
小鼠 单克隆(3B6)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛默飞世尔β1整合素抗体(Thermo Fisher, MA5-17103)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). elife (2019) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 1:50; 图 3a, 3b
赛默飞世尔β1整合素抗体(eBioscience/Thermo, 12-0299-42)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3a, 3b). Stem Cells (2019) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔β1整合素抗体(eBioscience, TS2/16)被用于被用于流式细胞仪在人类样本上 (图 3a). Sci Rep (2018) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 6a
赛默飞世尔β1整合素抗体(Affymetrix, 46-0299-41)被用于被用于流式细胞仪在人类样本上 (图 6a). Nat Commun (2017) ncbi
小鼠 单克隆(TS2/16)
  • 免疫细胞化学; 小鼠; 1:200; 图 4I
赛默飞世尔β1整合素抗体(eBioscience, 12-0299-41)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4I). Nat Commun (2017) ncbi
小鼠 单克隆(TS2/16)
  • 抑制或激活实验; 人类; 20 ug/ml; 图 1
赛默飞世尔β1整合素抗体(Thermo Scientific, TS2/16)被用于被用于抑制或激活实验在人类样本上浓度为20 ug/ml (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 家羊; 1:10; 图 3
赛默飞世尔β1整合素抗体(生活技术, CD2901)被用于被用于流式细胞仪在家羊样本上浓度为1:10 (图 3). Cytometry A (2016) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔β1整合素抗体(eBioscience, T2/16)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(MEM-101A)
  • 免疫细胞化学; 人类; 图 1b
赛默飞世尔β1整合素抗体(Invitrogen, CD2901)被用于被用于免疫细胞化学在人类样本上 (图 1b). Photomed Laser Surg (2016) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔β1整合素抗体(eBioscience, 17-0299)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔β1整合素抗体(eBioscience, 11-0299-41)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类; 1:100
赛默飞世尔β1整合素抗体(生活技术, CD2920)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nature (2015) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔β1整合素抗体(eBioscience, 11-0299-41)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Hum Reprod (2015) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔β1整合素抗体(eBioscience, TS2/16)被用于被用于流式细胞仪在人类样本上 (表 2). Cytometry B Clin Cytom (2014) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔β1整合素抗体(eBioscence, TS2/16)被用于被用于流式细胞仪在人类样本上 (图 5). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(eBioscience, 12-0299)被用于被用于流式细胞仪在人类样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(Caltag Laboratories, clone MEM101A)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(eBioscience, 17-0299-42)被用于被用于流式细胞仪在人类样本上. Biotechnol Bioeng (2013) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(Invitrogen, MEM-101A)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(Invitrogen, CD2901)被用于被用于流式细胞仪在人类样本上. Stem Cell Res Ther (2012) ncbi
小鼠 单克隆(TS2/16)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(eBioscience, 12-0299)被用于被用于流式细胞仪在人类样本上. Pediatr Dev Pathol (2012) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔β1整合素抗体(Caltag, MEM-101A)被用于被用于流式细胞仪在人类样本上 (图 4). Placenta (2011) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类; 1:20; 表 1
赛默飞世尔β1整合素抗体(Invitrogen, CD2901)被用于被用于流式细胞仪在人类样本上浓度为1:20 (表 1). Cell Transplant (2011) ncbi
小鼠 单克隆(4B7R)
  • 免疫组化; 人类; 图 3
赛默飞世尔β1整合素抗体(Lab Vision, 4B7R)被用于被用于免疫组化在人类样本上 (图 3). J Cell Physiol (2010) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(Caltag, MEM101A)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2009) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
赛默飞世尔β1整合素抗体(Caltag, MEM101A)被用于被用于流式细胞仪在人类样本上. Haematologica (2006) ncbi
小鼠 单克隆(4B7R)
  • 免疫细胞化学; 人类; 1:200; 图 3
赛默飞世尔β1整合素抗体(Lab Vision, 4B7R)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Stem Cells (2006) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(4B7R)
  • 流式细胞仪; 人类; 图 3d
伯乐(Bio-Rad)公司β1整合素抗体(Serotec, MCA1949FT)被用于被用于流式细胞仪在人类样本上 (图 3d). Oncotarget (2016) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类; 1:200; 图 4
伯乐(Bio-Rad)公司β1整合素抗体(AbD serotec, MCA2028)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(12G10)
  • 免疫印迹; 人类; 图 4
伯乐(Bio-Rad)公司β1整合素抗体(Serotec, MCA 2028)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(4B7R)
  • 流式细胞仪; 人类; 图 2c
伯乐(Bio-Rad)公司β1整合素抗体(Serotec, MCA1949GA)被用于被用于流式细胞仪在人类样本上 (图 2c). Food Funct (2014) ncbi
Novus Biologicals
小鼠 单克隆(12G10)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 s6d
  • 免疫细胞化学; 人类; 1:200; 图 5a, 5b
  • 免疫印迹; 人类; 1:500; 图 s8
Novus Biologicalsβ1整合素抗体(Novus, NB100-63255)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 s6d), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 5a, 5b) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s8). Front Cell Dev Biol (2019) ncbi
小鼠 单克隆(12G10)
  • 免疫细胞化学; 人类; 1:200; 图 2e
Novus Biologicalsβ1整合素抗体(Novus, 63255AF647)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2e). J Cell Sci (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D6S1W)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 34971)被用于被用于免疫印迹在人类样本上 (图 2g). Mol Ther Nucleic Acids (2021) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 图 9c
赛信通(上海)生物试剂有限公司β1整合素抗体(CST, 9699)被用于被用于免疫印迹在人类样本上 (图 9c). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司β1整合素抗体(CST, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Int J Oncol (2021) ncbi
domestic rabbit 单克隆(D6S1W)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 34971)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D6S1W)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司β1整合素抗体(CST, 34971)被用于被用于免疫印迹在小鼠样本上 (图 2e). Theranostics (2021) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). elife (2020) ncbi
domestic rabbit 单克隆(D6S1W)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 34971S)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 4e). Cell (2020) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫组化; 人类; 图 4d, 3b
赛信通(上海)生物试剂有限公司β1整合素抗体(细胞科学技术, 9699)被用于被用于免疫组化在人类样本上 (图 4d, 3b). BMC Med Genet (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3d
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 1:100; 图 8f
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signalling Technology, 4706)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 8f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706S)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 1b). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司β1整合素抗体(CST, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Mol Biol Cell (2019) ncbi
domestic rabbit 单克隆(D6S1W)
  • 免疫印迹; 大鼠; 图 s1
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, D6S1W)被用于被用于免疫印迹在大鼠样本上 (图 s1). Front Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2j
赛信通(上海)生物试剂有限公司β1整合素抗体(cell signalling, 4706)被用于被用于免疫印迹在人类样本上 (图 2j). Mol Cancer (2017) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 s5b
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5b). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 图 3h
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 9699)被用于被用于免疫印迹在人类样本上 (图 3h). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D6S1W)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 34971)被用于被用于免疫印迹在人类样本上 (图 5e). Sci Signal (2017) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 ev3b
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ev3b). Mol Syst Biol (2017) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell signaling, D2E5)被用于被用于免疫印迹在人类样本上 (图 1d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706)被用于被用于免疫印迹在人类样本上 (图 6b). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
  • 免疫组化; 小鼠; 1:200; 图 s9b
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 s9b). Nat Med (2016) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 9699)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 4
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 9699)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 4). Mol Reprod Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 4706)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling, 4706)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Development (2016) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 9699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 9699)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(D2E5)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Tech, 9699)被用于被用于免疫印迹在人类样本上 (图 s6). Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司β1整合素抗体(Cell Signaling Technology, 4706)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2016) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(4B4LDC9LDH8)
  • 免疫细胞化学; 人类; 图 s1a
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 6603113)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 抑制或激活实验; 人类; 图 3h
  • 免疫细胞化学; 人类; 1:1000; 图 s1j
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 6603113)被用于被用于抑制或激活实验在人类样本上 (图 3h) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s1j). J Cell Sci (2018) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 流式细胞仪; 人类; 1:50; 图 1c
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 6604105)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 流式细胞仪; 人类; 1:100; 表 1
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 6604105)被用于被用于流式细胞仪在人类样本上浓度为1:100 (表 1). Biol Open (2016) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 流式细胞仪; African green monkey; 图 s1
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 4B4)被用于被用于流式细胞仪在African green monkey样本上 (图 s1). J Med Primatol (2016) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 免疫细胞化学; 人类; 图 s3
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 6603113)被用于被用于免疫细胞化学在人类样本上 (图 s3). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 4B4)被用于被用于流式细胞仪在人类样本上. Clin Exp Immunol (2015) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 免疫印迹; 人类; 图 5
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman Coulter, 4B4LDC9LDH8)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Mol Med (2010) ncbi
小鼠 单克隆(4B4LDC9LDH8)
  • 流式细胞仪; South American squirrel monkey
贝克曼库尔特实验系统(苏州)有限公司β1整合素抗体(Beckman, 4B4LDC9LDH8(4B4))被用于被用于流式细胞仪在South American squirrel monkey样本上. J Immunol Methods (2005) ncbi
Exbio
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 犬; 图 3
Exbioβ1整合素抗体(EXBIO, 1P219T025)被用于被用于流式细胞仪在犬样本上 (图 3). Animals (Basel) (2021) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类; 图 4a
Exbioβ1整合素抗体(EXBIO Praha, MEM-101A)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(MEM-101A)
  • 其他; 人类; 图 st1
Exbioβ1整合素抗体(Exbio Praha a.s., MEM-101A)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类
Exbioβ1整合素抗体(Exbio, 1A-219-T100)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
碧迪BD
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 7f
碧迪BDβ1整合素抗体(BD, 555443)被用于被用于流式细胞仪在人类样本上 (图 7f). Nat Commun (2022) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 图 7a
碧迪BDβ1整合素抗体(BD, 610467)被用于被用于免疫印迹在人类样本上 (图 7a). Cells (2022) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:1000; 图 5b
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Cancer (2022) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
碧迪BDβ1整合素抗体(BD Biosciences, 61046)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Nat Commun (2021) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:300; 图 3
碧迪BDβ1整合素抗体(BD Biosciences, MAR4)被用于被用于流式细胞仪在人类样本上浓度为1:300 (图 3). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(18/CD29)
  • 免疫细胞化学; 人类; 1:400; 图 1b
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1b). elife (2020) ncbi
小鼠 单克隆(18/CD29)
  • 流式细胞仪; 人类; 图 s1
碧迪BDβ1整合素抗体(BD, 610468)被用于被用于流式细胞仪在人类样本上 (图 s1). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类; 10 ug/ml; 图 s9a
碧迪BDβ1整合素抗体(BD Pharmingen, 556048)被用于被用于流式细胞仪在人类样本上浓度为10 ug/ml (图 s9a). Nat Commun (2019) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类; 图 5a
碧迪BDβ1整合素抗体(Becton Dickinson, 556,049)被用于被用于流式细胞仪在人类样本上 (图 5a). BMC Cancer (2019) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 大鼠; 图 3
碧迪BDβ1整合素抗体(BD, 557332)被用于被用于流式细胞仪在大鼠样本上 (图 3). Biosci Rep (2019) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 1b
碧迪BDβ1整合素抗体(BD Pharmingen, 561795)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2019) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:100; 图 1c
碧迪BDβ1整合素抗体(BD Biosciences, 561794)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1c). elife (2019) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 8a
碧迪BDβ1整合素抗体(BD, MAR4)被用于被用于流式细胞仪在人类样本上 (图 8a). Front Immunol (2019) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:5; 图 1d
碧迪BDβ1整合素抗体(BD Bioscience, 559882)被用于被用于流式细胞仪在人类样本上浓度为1:5 (图 1d). Sci Adv (2019) ncbi
小鼠 单克隆(HUTS-21)
  • 免疫细胞化学; 人类; 1:50; 图 s12a
碧迪BDβ1整合素抗体(BD, 556047)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s12a). Science (2018) ncbi
大鼠 单克隆(Mab 13)
  • 免疫细胞化学; 人类; 图 s6
碧迪BDβ1整合素抗体(BD Biosciences, Mab13)被用于被用于免疫细胞化学在人类样本上 (图 s6). EMBO J (2018) ncbi
小鼠 单克隆(18/CD29)
  • 其他; 人类; 图 4c
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类; 图 1e
碧迪BDβ1整合素抗体(BD, 556049)被用于被用于流式细胞仪在人类样本上 (图 1e). J Exp Med (2018) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 5a
碧迪BDβ1整合素抗体(BD, 555443)被用于被用于流式细胞仪在人类样本上 (图 5a). J Exp Med (2018) ncbi
小鼠 单克隆(HUTS-21)
  • 抑制或激活实验; 人类; 图 4b
碧迪BDβ1整合素抗体(BD Biosciences, 556048)被用于被用于抑制或激活实验在人类样本上 (图 4b). J Cell Sci (2018) ncbi
小鼠 单克隆(18/CD29)
碧迪BDβ1整合素抗体(BD Biosciences, 18)被用于. Nat Commun (2017) ncbi
小鼠 单克隆(18/CD29)
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610468)被用于. Cancer Metab (2017) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:1000; 图 4b
碧迪BDβ1整合素抗体(Becton Dickinson, 610468)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:1000; 图 3b
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncol Lett (2017) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:50; 表 1
碧迪BDβ1整合素抗体(Becton, 555443)被用于被用于流式细胞仪在人类样本上浓度为1:50 (表 1). Sci Rep (2017) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 2a
  • 免疫沉淀; 人类; 图 3a
  • 免疫细胞化学; 人类; 图 4c
  • 免疫印迹; 人类; 图 2f
碧迪BDβ1整合素抗体(BD Pharmingen, MAR4)被用于被用于流式细胞仪在人类样本上 (图 2a), 被用于免疫沉淀在人类样本上 (图 3a), 被用于免疫细胞化学在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 2f). Oncotarget (2017) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:50; 图 st2
碧迪BDβ1整合素抗体(BD Biosciences, 563513)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 st2). Sci Rep (2017) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:1000; 图 s11a
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11a). Nat Commun (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(Becton, Dickinson, and Company, Mar-4)被用于被用于流式细胞仪在人类样本上. Cytotherapy (2017) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 小鼠; 1:100; 图 2g
碧迪BDβ1整合素抗体(BD Biosciences, 610468)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2g). J Neurosci Res (2017) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 小鼠
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610467)被用于被用于免疫印迹在小鼠样本上. Oncotarget (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:1000
碧迪BDβ1整合素抗体(BD, 610467)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Med (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 2
碧迪BDβ1整合素抗体(BD Biosciences, 555443)被用于被用于流式细胞仪在人类样本上 (图 2). Mol Med Rep (2016) ncbi
大鼠 单克隆(Mab 13)
  • 抑制或激活实验; 人类; 1:500; 图 3a
碧迪BDβ1整合素抗体(BD Biosciences, 552828)被用于被用于抑制或激活实验在人类样本上浓度为1:500 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫细胞化学; 人类; 图 1
碧迪BDβ1整合素抗体(BD Bioscience, 610467)被用于被用于免疫细胞化学在人类样本上 (图 1). Arch Oral Biol (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610467)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD Bioscience, 555443)被用于被用于流式细胞仪在人类样本上. Mol Med Rep (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
碧迪BDβ1整合素抗体(BD Biosciences, 18/CD29)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 st1
碧迪BDβ1整合素抗体(BD, 555443)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(HUTS-21)
  • 免疫细胞化学; 人类; 1:250; 图 3
碧迪BDβ1整合素抗体(BD Pharmigen, 556048)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(Mab 13)
  • 流式细胞仪; 人类; 7.5 ug/ml; 图 s6a
碧迪BDβ1整合素抗体(BD Pharmingen, BD552828)被用于被用于流式细胞仪在人类样本上浓度为7.5 ug/ml (图 s6a). Exp Cell Res (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 表 s1
碧迪BDβ1整合素抗体(BD Pharmingen, BD555443)被用于被用于流式细胞仪在人类样本上 (表 s1). Stem Cells (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 图 4
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610467)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Sci (2016) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类; 表 2
碧迪BDβ1整合素抗体(BD Pharmingen, 556048)被用于被用于流式细胞仪在人类样本上 (表 2). Int J Mol Med (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:100; 图 2g
碧迪BDβ1整合素抗体(BD Pharmingen, MAR4)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2g). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:500; 图 1d
碧迪BDβ1整合素抗体(BD Pharmingen, 555443)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 1d). Eur J Immunol (2016) ncbi
小鼠 单克隆(18/CD29)
  • 流式细胞仪; 犬; 1:2000; 图 5
  • 免疫细胞化学; 犬; 1:500; 图 7
  • 免疫印迹; 犬; 1:200; 图 9
碧迪BDβ1整合素抗体(BD Biosciences, 610468)被用于被用于流式细胞仪在犬样本上浓度为1:2000 (图 5), 被用于免疫细胞化学在犬样本上浓度为1:500 (图 7) 和 被用于免疫印迹在犬样本上浓度为1:200 (图 9). Stem Cell Rev (2016) ncbi
小鼠 单克隆(18/CD29)
  • 免疫组化-石蜡切片; 小鼠; 图 2
碧迪BDβ1整合素抗体(BD -Transduction Laboratories, 610468)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 大鼠; 1:100; 图 4e
碧迪BDβ1整合素抗体(BD Bioscience, 610468)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 4e). Nat Commun (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 1:2000; 图 1a
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610468)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Cell Biol (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 2
碧迪BDβ1整合素抗体(BD Biosciences, 559883)被用于被用于流式细胞仪在人类样本上 (图 2). J Endod (2015) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD, HUTS21)被用于被用于流式细胞仪在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 小鼠; 1:3000; 图 5
碧迪BDβ1整合素抗体(BD, 610468)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 2
碧迪BDβ1整合素抗体(BD Biosciences, 555442)被用于被用于流式细胞仪在人类样本上 (图 2). Int J Mol Med (2015) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类; 图 s4
碧迪BDβ1整合素抗体(BD Pharmingen, 556048)被用于被用于流式细胞仪在人类样本上 (图 s4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(18/CD29)
碧迪BDβ1整合素抗体(BD, 610468)被用于. Mol Cancer (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 小鼠; 图 3
碧迪BDβ1整合素抗体(BD Transduction Laboratories, 610468)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncotarget (2015) ncbi
大鼠 单克隆(Mab 13)
  • 免疫组化-冰冻切片; 人类; 图 1
  • 免疫组化-石蜡切片; 人类; 图 4
碧迪BDβ1整合素抗体(BD Biosciences, mAb13)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1) 和 被用于免疫组化-石蜡切片在人类样本上 (图 4). Acta Neuropathol (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
碧迪BDβ1整合素抗体(BD Bioscience, 610467)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Oncotarget (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 图 s2
碧迪BDβ1整合素抗体(BD Biosciences, MAR4)被用于被用于流式细胞仪在人类样本上 (图 s2). J Immunol (2015) ncbi
小鼠 单克隆(HUTS-21)
  • 免疫沉淀; 人类; 1:200; 图 3
碧迪BDβ1整合素抗体(BD Pharmingen, HUTS-21)被用于被用于免疫沉淀在人类样本上浓度为1:200 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 图 5
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2015) ncbi
大鼠 单克隆(Mab 13)
  • 抑制或激活实验; 人类; 4 ug/ml; 图 3
  • 免疫细胞化学; 人类; 图 3
碧迪BDβ1整合素抗体(BD Biosciences, mAb13)被用于被用于抑制或激活实验在人类样本上浓度为4 ug/ml (图 3) 和 被用于免疫细胞化学在人类样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(B.D. Biosciences, 561795)被用于被用于流式细胞仪在人类样本上. World J Stem Cells (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD Pharmingen, 559883)被用于被用于流式细胞仪在人类样本上. Exp Cell Res (2015) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD Biosciences, 563513)被用于被用于流式细胞仪在人类样本上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类; 图 3, 4
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫印迹在人类样本上 (图 3, 4). Mol Cancer Res (2015) ncbi
大鼠 单克隆(Mab 13)
  • 免疫印迹; 人类
碧迪BDβ1整合素抗体(BD Biosciences, Mab 13)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD Bioscience, MAR4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD Biosciences, MAR4)被用于被用于流式细胞仪在人类样本上. Neoplasia (2014) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类
碧迪BDβ1整合素抗体(BD Biosciences, 610467)被用于被用于免疫印迹在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD, 555443)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类
碧迪BDβ1整合素抗体(BD, 556049)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(18/CD29)
  • 免疫细胞化学; 人类; 1:50
碧迪BDβ1整合素抗体(Becton Dickinson, 610468)被用于被用于免疫细胞化学在人类样本上浓度为1:50. J Mol Endocrinol (2014) ncbi
小鼠 单克隆(18/CD29)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BDβ1整合素抗体(BD, 18/CD29)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Gut (2015) ncbi
大鼠 单克隆(Mab 13)
  • 抑制或激活实验; 人类; 图 6f
碧迪BDβ1整合素抗体(BD Biosciences, 552828)被用于被用于抑制或激活实验在人类样本上 (图 6f). EMBO Mol Med (2014) ncbi
小鼠 单克隆(HUTS-21)
  • 流式细胞仪; 人类; 1 ug/1x106 cells
碧迪BDβ1整合素抗体(BD pharmingen, 556048)被用于被用于流式细胞仪在人类样本上浓度为1 ug/1x106 cells. J Cell Mol Med (2014) ncbi
大鼠 单克隆(Mab 13)
  • 抑制或激活实验; 人类
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
碧迪BDβ1整合素抗体(BD Biosciences, mAb13)被用于被用于抑制或激活实验在人类样本上, 被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(MAR4)
  • 流式细胞仪; 人类; 1:100
碧迪BDβ1整合素抗体(BD Biosciences, 555443)被用于被用于流式细胞仪在人类样本上浓度为1:100. J Neurosci Res (2013) ncbi
大鼠 单克隆(Mab 13)
  • 抑制或激活实验; 人类
碧迪BDβ1整合素抗体(BD Biosciences, 552828)被用于被用于抑制或激活实验在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类
碧迪BDβ1整合素抗体(BD, 610467)被用于被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(18/CD29)
  • 免疫印迹; 人类
碧迪BDβ1整合素抗体(BD, 610467)被用于被用于免疫印迹在人类样本上. J Cell Biol (2012) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类; 图 1e
Developmental Studies Hybridoma Bankβ1整合素抗体(DSHB, p5d2)被用于被用于免疫细胞化学在人类样本上 (图 1e). Curr Biol (2020) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类; 1:200; 图 4h
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, P5D2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4h). J Cell Sci (2019) ncbi
小鼠 单克隆(P5D2)
  • 免疫印迹基因敲除验证; 小鼠; 1:17; 图 2c
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, dilution, P5D2)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:17 (图 2c). Nat Commun (2017) ncbi
小鼠 单克隆(P4C10)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 2b
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Hybridoma Studies Bank, P4C10)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2017) ncbi
小鼠 单克隆(P5D2)
  • 免疫细胞化学; 人类; 1:100; 图 s4
Developmental Studies Hybridoma Bankβ1整合素抗体(R&D, P5D2)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s4). J Cell Sci (2016) ncbi
大鼠 单克隆(AIIB2)
  • 抑制或激活实验; 人类; 图 7
Developmental Studies Hybridoma Bankβ1整合素抗体(DSHB, AIIB2)被用于被用于抑制或激活实验在人类样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(P4C10)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, P4C10)被用于被用于免疫沉淀在人类样本上 和 被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
大鼠 单克隆(AIIB2)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫细胞化学; 人类; 1:50
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, AIIB2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫细胞化学在人类样本上浓度为1:50. PLoS ONE (2013) ncbi
小鼠 单克隆(P5D2)
  • 流式细胞仪; 人类
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, P5D2)被用于被用于流式细胞仪在人类样本上. Biochem J (2013) ncbi
小鼠 单克隆(P5D2)
  • 抑制或激活实验; 人类; 10 ug/ml
  • 免疫细胞化学; 人类; 10 ug/ml; 图 s9f
Developmental Studies Hybridoma Bankβ1整合素抗体(Developmental Studies Hybridoma Bank, P5D2)被用于被用于抑制或激活实验在人类样本上浓度为10 ug/ml 和 被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 s9f). PLoS ONE (2012) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2a
  • 免疫印迹; 小鼠; 1:500; 图 2a
西格玛奥德里奇β1整合素抗体(Sigma-Aldrich, SAB4501582)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2a). Nitric Oxide (2018) ncbi
小鼠 单克隆(MEM-101A)
  • 流式细胞仪; 人类; 1:1000; 图 1e
西格玛奥德里奇β1整合素抗体(Sigma-Aldrich, SAB4700394)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 1e). Mol Med Rep (2016) ncbi
ATCC
小鼠 单克隆
  • 免疫沉淀; 人类; 图 3
ATCCβ1整合素抗体(ATCC, HB-243)被用于被用于免疫沉淀在人类样本上 (图 3). Oncotarget (2015) ncbi
文章列表
  1. Pan R, Yu Y, Zhu H, Zhang W, Qin Y, Ye L, et al. RSPO2 promotes progression of ovarian cancer through dual receptor-mediated FAK/Src signaling activation. iScience. 2022;25:105184 pubmed 出版商
  2. Dong N, Zhou P, Li D, Zhu H, Liu L, Ma H, et al. Intratracheal administration of umbilical cord-derived mesenchymal stem cells attenuates hyperoxia-induced multi-organ injury via heme oxygenase-1 and JAK/STAT pathways. World J Stem Cells. 2022;14:556-576 pubmed 出版商
  3. Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, et al. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther. 2022;13:465 pubmed 出版商
  4. Lei X, Lin H, Wang J, Ou Z, Ruan Y, Sadagopan A, et al. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat Commun. 2022;13:3882 pubmed 出版商
  5. Ebrahim N, Al Saihati H, Mostafa O, Hassouna A, Abdulsamea S, Abd El Aziz M El Gebaly E, et al. Prophylactic Evidence of MSCs-Derived Exosomes in Doxorubicin/Trastuzumab-Induced Cardiotoxicity: Beyond Mechanistic Target of NRG-1/Erb Signaling Pathway. Int J Mol Sci. 2022;23: pubmed 出版商
  6. Park S, Lee C, Choi J, Kim J, Lee W, Jang T, et al. Dysadherin awakens mechanical forces and promotes colorectal cancer progression. Theranostics. 2022;12:4399-4414 pubmed 出版商
  7. Eikmans M, van der Keur C, Anholts J, Drabbels J, van Beelen E, de Sousa Lopes S, et al. Primary Trophoblast Cultures: Characterization of HLA Profiles and Immune Cell Interactions. Front Immunol. 2022;13:814019 pubmed 出版商
  8. Naydenov N, Lechuga S, Zalavadia A, Mukherjee P, Gordon I, Skvasik D, et al. P-Cadherin Regulates Intestinal Epithelial Cell Migration and Mucosal Repair, but Is Dispensable for Colitis Associated Colon Cancer. Cells. 2022;11: pubmed 出版商
  9. Dai J, Cimino P, Gouin K, Grzelak C, Barrett A, Lim A, et al. Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nat Cancer. 2022;3:25-42 pubmed 出版商
  10. Sáinz Jaspeado M, Smith R, Plunde O, Pawelzik S, Jin Y, Nordling S, et al. Palmdelphin Regulates Nuclear Resilience to Mechanical Stress in the Endothelium. Circulation. 2021;144:1629-1645 pubmed 出版商
  11. Zhang L, Yao L, Zhou W, Tian J, Ruan B, Lu Z, et al. miR-497 defect contributes to gastric cancer tumorigenesis and progression via regulating CDC42/ITGB1/FAK/PXN/AKT signaling. Mol Ther Nucleic Acids. 2021;25:567-577 pubmed 出版商
  12. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  13. Zhang S, Zhu D, Li Z, Huang K, Hu S, Lutz H, et al. A stem cell-derived ovarian regenerative patch restores ovarian function and rescues fertility in rats with primary ovarian insufficiency. Theranostics. 2021;11:8894-8908 pubmed 出版商
  14. Chong D, Rebeyrol C, José R, Williams A, Brown J, Scotton C, et al. ICAM-1 and ICAM-2 Are Differentially Expressed and Up-Regulated on Inflamed Pulmonary Epithelium, but Neither ICAM-2 nor LFA-1: ICAM-1 Are Required for Neutrophil Migration Into the Airways In Vivo. Front Immunol. 2021;12:691957 pubmed 出版商
  15. Wang L, Rajah A, Brown C, McCaffrey L. CD13 orients the apical-basal polarity axis necessary for lumen formation. Nat Commun. 2021;12:4697 pubmed 出版商
  16. Shelton W, Thomas S, Alexander H, Thomes C, Conway D, Dubash A. Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep. 2021;11:13295 pubmed 出版商
  17. Le A, Yelland T, Paul N, Fort L, Nikolaou S, Ismail S, et al. CYRI-A limits invasive migration through macropinosome formation and integrin uptake regulation. J Cell Biol. 2021;220: pubmed 出版商
  18. Takahashi K, Kanerva K, Vanharanta L, Almeida Souza L, Lietha D, Olkkonen V, et al. ORP2 couples LDL-cholesterol transport to FAK activation by endosomal cholesterol/PI(4,5)P2 exchange. EMBO J. 2021;40:e106871 pubmed 出版商
  19. Zhu J, Cai T, Zhou J, Du W, Zeng Y, Liu T, et al. CD151 drives cancer progression depending on integrin α3β1 through EGFR signaling in non-small cell lung cancer. J Exp Clin Cancer Res. 2021;40:192 pubmed 出版商
  20. Qiao Y, Jin T, Guan S, Cheng S, Wen S, Zeng H, et al. Long non-coding RNA Lnc-408 promotes invasion and metastasis of breast cancer cell by regulating LIMK1. Oncogene. 2021;40:4198-4213 pubmed 出版商
  21. Saito K, Mitsui A, Sumardika I, Yokoyama Y, Sakaguchi M, Kondo E. PLOD2-driven IL-6/STAT3 signaling promotes the invasion and metastasis of oral squamous cell carcinoma via activation of integrin β1. Int J Oncol. 2021;58: pubmed 出版商
  22. Fayad R, Rojas M, Partisani M, Finetti P, Dib S, Abélanet S, et al. EFA6B regulates a stop signal for collective invasion in breast cancer. Nat Commun. 2021;12:2198 pubmed 出版商
  23. Amado Azevedo J, van Stalborch A, Valent E, Nawaz K, van Bezu J, Eringa E, et al. Depletion of Arg/Abl2 improves endothelial cell adhesion and prevents vascular leak during inflammation. Angiogenesis. 2021;: pubmed 出版商
  24. Qin L, Fu X, Ma J, Lin M, Zhang P, Wang Y, et al. Kindlin-2 mediates mechanotransduction in bone by regulating expression of Sclerostin in osteocytes. Commun Biol. 2021;4:402 pubmed 出版商
  25. Schiweck J, Murk K, Ledderose J, Münster Wandowski A, Ornaghi M, Vida I, et al. Drebrin controls scar formation and astrocyte reactivity upon traumatic brain injury by regulating membrane trafficking. Nat Commun. 2021;12:1490 pubmed 出版商
  26. Hendawy H, Uemura A, Ma D, Namiki R, Samir H, Ahmed M, et al. Tissue Harvesting Site Effect on the Canine Adipose Stromal Vascular Fraction Quantity and Quality. Animals (Basel). 2021;11: pubmed 出版商
  27. Xiao L, Mochizuki M, Nakahara T, Miwa N. Hydrogen-Generating Silica Material Prevents UVA-ray-Induced Cellular Oxidative Stress, Cell Death, Collagen Loss and Melanogenesis in Human Cells and 3D Skin Equivalents. Antioxidants (Basel). 2021;10: pubmed 出版商
  28. Wang Y, Zhang K, Li T, Maruf A, Qin X, Luo L, et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics. 2021;11:164-180 pubmed 出版商
  29. Boucher J, Balandre A, Debant M, Vix J, Harnois T, Bourmeyster N, et al. Cx43 Present at the Leading Edge Membrane Governs Promigratory Effects of Osteoblast-Conditioned Medium on Human Prostate Cancer Cells in the Context of Bone Metastasis. Cancers (Basel). 2020;12: pubmed 出版商
  30. Huang Y, Liang C, Ritz D, Coelho R, Septiadi D, Estermann M, et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. elife. 2020;9: pubmed 出版商
  31. Kim K, Park T, Cho B, Kim T. Nanoparticles from Equine Fetal Bone Marrow-Derived Cells Enhance the Survival of Injured Chondrocytes. Animals (Basel). 2020;10: pubmed 出版商
  32. Dabelsteen S, Pallesen E, Marinova I, Nielsen M, Adamopoulou M, Rømer T, et al. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell. 2020;54:669-684.e7 pubmed 出版商
  33. Oguri Y, Shinoda K, Kim H, Alba D, Bolus W, Wang Q, et al. CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell. 2020;: pubmed 出版商
  34. Wu J, Song D, Li Z, Guo B, Xiao Y, Liu W, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020;30:794-809 pubmed 出版商
  35. Bae H, Hong K, Lee C, Jang C, Lee S, Choe K, et al. Angiopoietin-2-integrin α5β1 signaling enhances vascular fatty acid transport and prevents ectopic lipid-induced insulin resistance. Nat Commun. 2020;11:2980 pubmed 出版商
  36. Sundararaman A, Fukushima Y, Norman J, Uemura A, Mellor H. RhoJ Regulates α5β1 Integrin Trafficking to Control Fibronectin Remodeling during Angiogenesis. Curr Biol. 2020;30:2146-2155.e5 pubmed 出版商
  37. D Souza R, Lim J, Turgut A, Servage K, Zhang J, Orth K, et al. Calcium-stimulated disassembly of focal adhesions mediated by an ORP3/IQSec1 complex. elife. 2020;9: pubmed 出版商
  38. Barruet E, Garcia S, Striedinger K, Wu J, Lee S, Byrnes L, et al. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing. elife. 2020;9: pubmed 出版商
  39. Hunka J, Riley J, Debes G. Approaches to overcome flow cytometry limitations in the analysis of cells from veterinary relevant species. BMC Vet Res. 2020;16:83 pubmed 出版商
  40. Iqbal N, Jascur T, Harrison S, Edwards A, Smith L, Choi E, et al. Prune belly syndrome in surviving males can be caused by Hemizygous missense mutations in the X-linked Filamin A gene. BMC Med Genet. 2020;21:38 pubmed 出版商
  41. Bandeira F, Goh T, Setiawan M, Yam G, Mehta J. Cellular therapy of corneal epithelial defect by adipose mesenchymal stem cell-derived epithelial progenitors. Stem Cell Res Ther. 2020;11:14 pubmed 出版商
  42. Suzuki D, Flahou C, Yoshikawa N, Stirblyte I, Hayashi Y, Sawaguchi A, et al. iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Reports. 2020;14:49-59 pubmed 出版商
  43. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 2019;17:e3000557 pubmed 出版商
  44. Freeman S, Uderhardt S, Saric A, Collins R, Buckley C, Mylvaganam S, et al. Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science. 2020;367:301-305 pubmed 出版商
  45. Wu D, Witt R, Harrington D, Farach Carson M. Dynamic Assembly of Human Salivary Stem/Progenitor Microstructures Requires Coordinated α1β1 Integrin-Mediated Motility. Front Cell Dev Biol. 2019;7:224 pubmed 出版商
  46. Reed M, Luissint A, Azcutia V, Fan S, O Leary M, Quirós M, et al. Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun. 2019;10:5004 pubmed 出版商
  47. Fusco P, Parisatto B, Rampazzo E, Persano L, Frasson C, Di Meglio A, et al. Patient-derived organoids (PDOs) as a novel in vitro model for neuroblastoma tumours. BMC Cancer. 2019;19:970 pubmed 出版商
  48. Nakamura Y, Dryanovski D, Kimura Y, Jackson S, Woods A, Yasui Y, et al. Cocaine-induced endocannabinoid signaling mediated by sigma-1 receptors and extracellular vesicle secretion. elife. 2019;8: pubmed 出版商
  49. Wang Q, Yang Q, Zhang A, Kang Z, Wang Y, Zhang Z. Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep. 2019;39: pubmed 出版商
  50. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  51. Shokri M, Bozorgmehr M, Ghanavatinejad A, Falak R, Aleahmad M, Kazemnejad S, et al. Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells. Sci Rep. 2019;9:10007 pubmed 出版商
  52. Essex A, Pineda J, Acharya G, Xin H, Evans J, Iorns E, et al. Replication Study: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. elife. 2019;8: pubmed 出版商
  53. Zhou H, Wang L, Zhang C, Hu J, Chen J, Du W, et al. Feasibility of repairing full-thickness skin defects by iPSC-derived epithelial stem cells seeded on a human acellular amniotic membrane. Stem Cell Res Ther. 2019;10:155 pubmed 出版商
  54. Bayer S, Grither W, Brenot A, Hwang P, Barcus C, Ernst M, et al. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. elife. 2019;8: pubmed 出版商
  55. Navinés Ferrer A, Ainsua Enrich E, Serrano Candelas E, Sayos J, Martin M. Myo1f, an Unconventional Long-Tailed Myosin, Is a New Partner for the Adaptor 3BP2 Involved in Mast Cell Migration. Front Immunol. 2019;10:1058 pubmed 出版商
  56. Kalappurakkal J, Anilkumar A, Patra C, van Zanten T, Sheetz M, Mayor S. Integrin Mechano-chemical Signaling Generates Plasma Membrane Nanodomains that Promote Cell Spreading. Cell. 2019;: pubmed 出版商
  57. Ling C, Nishimoto K, Rolfs Z, Smith L, Frey B, Welham N. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. Sci Adv. 2019;5:eaav7384 pubmed 出版商
  58. Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, et al. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci. 2019;132: pubmed 出版商
  59. Xanthis I, Souilhol C, Serbanovic Canic J, Roddie H, Kalli A, Fragiadaki M, et al. β1 integrin is a sensor of blood flow direction. J Cell Sci. 2019;132: pubmed 出版商
  60. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  61. Lee J, Chang J, Dominguez A, Lee H, Nam S, Chang J, et al. YAP-independent mechanotransduction drives breast cancer progression. Nat Commun. 2019;10:1848 pubmed 出版商
  62. Li Y, Li K, Hu W, Ojcius D, Fang J, Li S, et al. Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer. elife. 2019;8: pubmed 出版商
  63. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed 出版商
  64. Wu Y, Tan X, Liu P, Yang Y, Huang Y, Liu X, et al. ITGA6 and RPSA synergistically promote pancreatic cancer invasion and metastasis via PI3K and MAPK signaling pathways. Exp Cell Res. 2019;379:30-47 pubmed 出版商
  65. Gorla M, Santiago C, Chaudhari K, Layman A, Oliver P, Bashaw G. Ndfip Proteins Target Robo Receptors for Degradation and Allow Commissural Axons to Cross the Midline in the Developing Spinal Cord. Cell Rep. 2019;26:3298-3312.e4 pubmed 出版商
  66. Wang M, Hinton J, Gard J, Garcia J, Knudsen B, Nagle R, et al. Integrin α6β4E variant is associated with actin and CD9 structures and modifies the biophysical properties of cell-cell and cell-extracellular matrix interactions. Mol Biol Cell. 2019;30:838-850 pubmed 出版商
  67. Hlavac N, VandeVord P. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol. 2019;10:99 pubmed 出版商
  68. Velázquez Avila M, Balandrán J, Ramírez Ramírez D, Velázquez Avila M, Sandoval A, Felipe López A, et al. High cortactin expression in B-cell acute lymphoblastic leukemia is associated with increased transendothelial migration and bone marrow relapse. Leukemia. 2019;33:1337-1348 pubmed 出版商
  69. Chen X, Wanggou S, Bodalia A, Zhu M, Dong W, Fan J, et al. A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron. 2018;100:799-815.e7 pubmed 出版商
  70. Albrengues J, Shields M, Ng D, Park C, Ambrico A, Poindexter M, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361: pubmed 出版商
  71. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277-1292.e14 pubmed 出版商
  72. Singh V, Erady C, Balasubramanian N. Cell-matrix adhesion controls Golgi organization and function through Arf1 activation in anchorage-dependent cells. J Cell Sci. 2018;131: pubmed 出版商
  73. Almeida Souza L, Frank R, García Nafría J, Colussi A, Gunawardana N, Johnson C, et al. A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-Coated Pits. Cell. 2018;174:325-337.e14 pubmed 出版商
  74. Sakai Takemura F, Narita A, Masuda S, Wakamatsu T, Watanabe N, Nishiyama T, et al. Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors. Sci Rep. 2018;8:6555 pubmed 出版商
  75. Zhan R, Wang F, Wu Y, Wang Y, Qian W, Liu M, et al. Nitric oxide induces epidermal stem cell de-adhesion by targeting integrin β1 and Talin via the cGMP signalling pathway. Nitric Oxide. 2018;78:1-10 pubmed 出版商
  76. Takada N, Naito T, Inoue T, Nakayama K, Takatsu H, Shin H. Phospholipid-flipping activity of P4-ATPase drives membrane curvature. EMBO J. 2018;37: pubmed 出版商
  77. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  78. Lee C, Zhang H, Singh S, Koo L, Kabat J, Tsang H, et al. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. elife. 2018;7: pubmed 出版商
  79. Tissino E, Benedetti D, Herman S, ten Hacken E, Ahn I, Chaffee K, et al. Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. J Exp Med. 2018;215:681-697 pubmed 出版商
  80. Buffone A, Anderson N, Hammer D. Migration against the direction of flow is LFA-1-dependent in human hematopoietic stem and progenitor cells. J Cell Sci. 2018;131: pubmed 出版商
  81. Huet Calderwood C, Rivera Molina F, Iwamoto D, Kromann E, Toomre D, Calderwood D. Novel ecto-tagged integrins reveal their trafficking in live cells. Nat Commun. 2017;8:570 pubmed 出版商
  82. Lin Y, Ohbayashi N, Hongu T, Katagiri N, Funakoshi Y, Lee H, et al. Arf6 in lymphatic endothelial cells regulates lymphangiogenesis by controlling directional cell migration. Sci Rep. 2017;7:11431 pubmed 出版商
  83. Huang N, Pishesha N, Mukherjee J, Zhang S, Deshycka R, Sudaryo V, et al. Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat Commun. 2017;8:423 pubmed 出版商
  84. Wan Q, TruongVo T, Steele H, Ozcelikkale A, Han B, Wang Y, et al. Subcellular domain-dependent molecular hierarchy of SFK and FAK in mechanotransduction and cytokine signaling. Sci Rep. 2017;7:9033 pubmed 出版商
  85. Brasher M, Martynowicz D, Grafinger O, Hucik A, Shanks Skinner E, Uniacke J, et al. Interaction of Munc18c and syntaxin4 facilitates invadopodium formation and extracellular matrix invasion of tumor cells. J Biol Chem. 2017;292:16199-16210 pubmed 出版商
  86. Ren D, Yang Q, Dai Y, Guo W, Du H, Song L, et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-?B signaling pathway. Mol Cancer. 2017;16:117 pubmed 出版商
  87. Miikkulainen P, Högel H, Rantanen K, Suomi T, Kouvonen P, Elo L, et al. HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer Metab. 2017;5:5 pubmed 出版商
  88. Agrawal P, Fontanals Cirera B, Sokolova E, Jacob S, Vaiana C, Argibay D, et al. A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis. Cancer Cell. 2017;31:804-819.e7 pubmed 出版商
  89. Szoka L, Karna E, Hlebowicz Sarat K, Karaszewski J, Palka J. Exogenous proline stimulates type I collagen and HIF-1? expression and the process is attenuated by glutamine in human skin fibroblasts. Mol Cell Biochem. 2017;435:197-206 pubmed 出版商
  90. Nardone G, Oliver De La Cruz J, Vrbsky J, Martini C, Pribyl J, Skladal P, et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun. 2017;8:15321 pubmed 出版商
  91. Wu Y, Jhao Y, Cheng Y, Chen Y. 15-Deoxy-?12,14-prostaglandin J2 inhibits migration of human thyroid carcinoma cells by disrupting focal adhesion complex and adherens junction. Oncol Lett. 2017;13:2569-2576 pubmed 出版商
  92. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  93. Esteves C, Sheldrake T, Mesquita S, Pesántez J, Menghini T, Dawson L, et al. Isolation and characterization of equine native MSC populations. Stem Cell Res Ther. 2017;8:80 pubmed 出版商
  94. Wei X, Wang X, Zhan J, Chen Y, Fang W, Zhang L, et al. Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation. J Cell Biol. 2017;216:1455-1471 pubmed 出版商
  95. Starchenko A, Graves Deal R, Yang Y, Li C, Zent R, Singh B, et al. Clustering of integrin α5 at the lateral membrane restores epithelial polarity in invasive colorectal cancer cells. Mol Biol Cell. 2017;28:1288-1300 pubmed 出版商
  96. Langley S, Willeit K, Didangelos A, Matic L, Skroblin P, Barallobre Barreiro J, et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest. 2017;127:1546-1560 pubmed 出版商
  97. Merhi A, Delree P, Marini A. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Sci Rep. 2017;7:44602 pubmed 出版商
  98. Grasso S, Chapelle J, Salemme V, Aramu S, Russo I, Vitale N, et al. The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries. Nat Commun. 2017;8:14797 pubmed 出版商
  99. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  100. Di Maggio N, Martella E, Frismantiene A, Resink T, Schreiner S, Lucarelli E, et al. Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Sci Rep. 2017;7:44398 pubmed 出版商
  101. Eppler F, Quast T, Kolanus W. Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion. PLoS ONE. 2017;12:e0172443 pubmed 出版商
  102. El Kharbili M, Robert C, Witkowski T, Danty Berger E, Barbollat Boutrand L, Masse I, et al. Tetraspanin 8 is a novel regulator of ILK-driven ?1 integrin adhesion and signaling in invasive melanoma cells. Oncotarget. 2017;8:17140-17155 pubmed 出版商
  103. Rao D, Gurish M, Marshall J, Slowikowski K, Fonseka C, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542:110-114 pubmed 出版商
  104. Gamal W, Treskes P, Samuel K, Sullivan G, Siller R, Srsen V, et al. Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver. Sci Rep. 2017;7:37541 pubmed 出版商
  105. Zhu J, Wang P, Yu Z, Lai W, Cao Y, Huang P, et al. Advanced glycosylation end product promotes forkhead box O1 and inhibits Wnt pathway to suppress capacities of epidermal stem cells. Am J Transl Res. 2016;8:5569-5579 pubmed
  106. Fallahi Sichani M, Becker V, Izar B, Baker G, Lin J, Boswell S, et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol Syst Biol. 2017;13:905 pubmed 出版商
  107. Hammers D, Sleeper M, Forbes S, Coker C, Jirousek M, Zimmer M, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1:e90341 pubmed 出版商
  108. Pavel M, Imarisio S, Menzies F, Jimenez Sanchez M, Siddiqi F, Wu X, et al. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat Commun. 2016;7:13821 pubmed 出版商
  109. Parag Sharma K, Leyme A, DiGiacomo V, Marivin A, Broselid S, Garcia Marcos M. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (G?-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling. J Biol Chem. 2016;291:27098-27111 pubmed 出版商
  110. Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, et al. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy. 2017;19:61-74 pubmed 出版商
  111. Weitzenfeld P, Meshel T, Ben Baruch A. Microenvironmental networks promote tumor heterogeneity and enrich for metastatic cancer stem-like cells in Luminal-A breast tumor cells. Oncotarget. 2016;7:81123-81143 pubmed 出版商
  112. Yu Z, Zou Y, Fan J, Li C, Ma L. Notch1 is associated with the differentiation of human bone marrow?derived mesenchymal stem cells to cardiomyocytes. Mol Med Rep. 2016;14:5065-5071 pubmed 出版商
  113. Shapiro L, Parsons R, Koleske A, Gourley S. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res. 2017;95:1123-1143 pubmed 出版商
  114. Chia J, Zhu T, Chyou S, Dasoveanu D, Carballo C, Tian S, et al. Dendritic cells maintain dermal adipose-derived stromal cells in skin fibrosis. J Clin Invest. 2016;126:4331-4345 pubmed 出版商
  115. Zhou Z, Xu Z, Wang F, Lu Y, Yin P, Jiang C, et al. New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams. Oncotarget. 2016;7:71998-72010 pubmed 出版商
  116. Kishi T, Mayanagi T, Iwabuchi S, Akasaka T, Sobue K. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget. 2016;7:72113-72130 pubmed 出版商
  117. Qi L, Jafari N, Li X, Chen Z, Li L, Hytönen V, et al. Talin2-mediated traction force drives matrix degradation and cell invasion. J Cell Sci. 2016;129:3661-3674 pubmed
  118. Jiang M, Qiu J, Zhang L, Lu D, Long M, Chen L, et al. Changes in tension regulates proliferation and migration of fibroblasts by remodeling expression of ECM proteins. Exp Ther Med. 2016;12:1542-1550 pubmed
  119. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  120. Machacek C, Supper V, Leksa V, Mitulovic G, Spittler A, Drbal K, et al. Folate Receptor ? Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen. J Immunol. 2016;197:2229-38 pubmed 出版商
  121. Hammers D, Sleeper M, Forbes S, Shima A, Walter G, Sweeney H. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc. 2016;5: pubmed 出版商
  122. LAW M, Ferreira R, Davis B, Higgins P, Kim J, Castellano R, et al. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res. 2016;18:80 pubmed 出版商
  123. Tang Y, Bao W, Yang J, Ma L, Yang J, Xu Y, et al. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Mol Med Rep. 2016;14:2717-24 pubmed 出版商
  124. Amara S, Alotaibi D, Tiriveedhi V. NFAT5/STAT3 interaction mediates synergism of high salt with IL-17 towards induction of VEGF-A expression in breast cancer cells. Oncol Lett. 2016;12:933-943 pubmed
  125. Ashley S, Wilke C, Kim K, Moore B. Periostin regulates fibrocyte function to promote myofibroblast differentiation and lung fibrosis. Mucosal Immunol. 2017;10:341-351 pubmed 出版商
  126. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  127. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  128. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  129. Høye A, Couchman J, Wewer U, Yoneda A. The Phosphorylation and Distribution of Cortactin Downstream of Integrin α9β1 Affects Cancer Cell Behaviour. Sci Rep. 2016;6:28529 pubmed 出版商
  130. Barrow McGee R, Kishi N, Joffre C, Ménard L, Hervieu A, Bakhouche B, et al. Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes. Nat Commun. 2016;7:11942 pubmed 出版商
  131. Kosheleva N, Ilina I, Zurina I, Roskova A, Gorkun A, Ovchinnikov A, et al. Laser-based technique for controlled damage of mesenchymal cell spheroids: a first step in studying reparation in vitro. Biol Open. 2016;5:993-1000 pubmed 出版商
  132. Liu C, LeClair P, Monajemi M, Sly L, Reid G, Lim C. α-Integrin expression and function modulates presentation of cell surface calreticulin. Cell Death Dis. 2016;7:e2268 pubmed 出版商
  133. Matsumura S, Kojidani T, Kamioka Y, Uchida S, Haraguchi T, Kimura A, et al. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1. Nat Commun. 2016;7:ncomms11858 pubmed 出版商
  134. Wang B, Qi T, Chen S, Ye L, Huang Z, Li H. RFX1 maintains testis cord integrity by regulating the expression of Itga6 in male mouse embryos. Mol Reprod Dev. 2016;83:606-14 pubmed 出版商
  135. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  136. Ozdal Kurt F, Sen B, Tuglu I, Vatansever S, Türk B, Deliloglu Gurhan I. Attachment and growth of dental pulp stem cells on dentin in presence of extra calcium. Arch Oral Biol. 2016;68:131-41 pubmed 出版商
  137. Tokhtaeva E, Sun H, Deiss Yehiely N, Wen Y, Soni P, Gabrielli N, et al. The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits. J Cell Sci. 2016;129:2394-406 pubmed 出版商
  138. Merilahti P, Tauriainen S, Susi P. Human Parechovirus 1 Infection Occurs via αVβ1 Integrin. PLoS ONE. 2016;11:e0154769 pubmed 出版商
  139. Wang X, Zhu Y, Xu B, Wang J, Liu X. Identification of TLR2 and TLR4?induced microRNAs in human mesenchymal stem cells and their possible roles in regulating TLR signals. Mol Med Rep. 2016;13:4969-80 pubmed 出版商
  140. Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7:32876-92 pubmed 出版商
  141. Wang Q, Yang J, Lin X, Huang Z, Xie C, Fan H. Spot14/Spot14R expression may be involved in MSC adipogenic differentiation in patients with adolescent idiopathic scoliosis. Mol Med Rep. 2016;13:4636-42 pubmed 出版商
  142. Khan M, Chandrashekran A, Smith R, Dudhia J. Immunophenotypic characterization of ovine mesenchymal stem cells. Cytometry A. 2016;89:443-50 pubmed 出版商
  143. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  144. Conway A, Van Nostrand E, Pratt G, Aigner S, Wilbert M, Sundararaman B, et al. Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep. 2016;15:666-679 pubmed 出版商
  145. Chen W, Cao Z, Sugaya S, Lopez M, Sendra V, Laver N, et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun. 2016;7:11302 pubmed 出版商
  146. Weems P, Witty C, Amstalden M, Coolen L, Goodman R, Lehman M. ?-Opioid Receptor Is Colocalized in GnRH and KNDy Cells in the Female Ovine and Rat Brain. Endocrinology. 2016;157:2367-79 pubmed 出版商
  147. Nader G, Ezratty E, Gundersen G. FAK, talin and PIPKI? regulate endocytosed integrin activation to polarize focal adhesion assembly. Nat Cell Biol. 2016;18:491-503 pubmed 出版商
  148. Choi H, Nam K, Lee H, Yang S, Kim Y, Lee J, et al. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen. Oxid Med Cell Longev. 2016;2016:3859721 pubmed 出版商
  149. Winkler J, Roessler S, Sticht C, DiGuilio A, Drucker E, Hölzer K, et al. Cellular apoptosis susceptibility (CAS) is linked to integrin ?1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC). Oncotarget. 2016;7:22883-92 pubmed 出版商
  150. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  151. Petridou N, Skourides P. A ligand-independent integrin β1 mechanosensory complex guides spindle orientation. Nat Commun. 2016;7:10899 pubmed 出版商
  152. Ryu S, Park K, Lee S. Gleditsia sinensis Thorn Attenuates the Collagen-Based Migration of PC3 Prostate Cancer Cells through the Suppression of α2β1 Integrin Expression. Int J Mol Sci. 2016;17:328 pubmed 出版商
  153. Santio N, Salmela M, Arola H, Eerola S, Heino J, Rainio E, et al. The PIM1 kinase promotes prostate cancer cell migration and adhesion via multiple signalling pathways. Exp Cell Res. 2016;342:113-24 pubmed 出版商
  154. Zhao W, Wang C, Liu R, Wei C, Duan J, Liu K, et al. Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Sci Rep. 2016;6:21176 pubmed 出版商
  155. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  156. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  157. Jürets A, Le Bras M, Staffler G, Stein G, Leitner L, Neuhofer A, et al. Inhibition of Cellular Adhesion by Immunological Targeting of Osteopontin Neoepitopes Generated through Matrix Metalloproteinase and Thrombin Cleavage. PLoS ONE. 2016;11:e0148333 pubmed 出版商
  158. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  159. De Franceschi N, Arjonen A, Elkhatib N, Denessiouk K, Wrobel A, Wilson T, et al. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2. Nat Struct Mol Biol. 2016;23:172-9 pubmed 出版商
  160. Dave J, Abbey C, Duran C, Seo H, Johnson G, Bayless K. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci. 2016;129:743-56 pubmed 出版商
  161. Heo J, Choi Y, Kim H, Kim H. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37:115-25 pubmed 出版商
  162. van Essen T, van Zijl L, Possemiers T, Mulder A, Zwart S, Chou C, et al. Biocompatibility of a fish scale-derived artificial cornea: Cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity. Biomaterials. 2016;81:36-45 pubmed 出版商
  163. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  164. Kraft S, Klemis V, Sens C, Lenhard T, Jacobi C, Samstag Y, et al. Identification and characterization of a unique role for EDB fibronectin in phagocytosis. J Mol Med (Berl). 2016;94:567-81 pubmed 出版商
  165. Mvula B, Abrahamse H. Differentiation Potential of Adipose-Derived Stem Cells When Cocultured with Smooth Muscle Cells, and the Role of Low-Intensity Laser Irradiation. Photomed Laser Surg. 2016;34:509-515 pubmed
  166. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  167. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed 出版商
  168. Schminke B, Trautmann S, Mai B, Miosge N, Blaschke S. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. Eur J Immunol. 2016;46:440-5 pubmed 出版商
  169. Duan W, Lopez M. Effects of Cryopreservation on Canine Multipotent Stromal Cells from Subcutaneous and Infrapatellar Adipose Tissue. Stem Cell Rev. 2016;12:257-68 pubmed 出版商
  170. Banerjee S, Li G, Li Y, Gaughan C, Baskar D, Parker Y, et al. RNase L is a negative regulator of cell migration. Oncotarget. 2015;6:44360-72 pubmed 出版商
  171. Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 2016;107:84-94 pubmed 出版商
  172. Zhang L, Zou W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Mol Med Rep. 2015;12:7869-76 pubmed 出版商
  173. Jeannot P, Callot C, Baer R, Duquesnes N, Guerra C, Guillermet Guibert J, et al. Loss of p27Kip¹ promotes metaplasia in the pancreas via the regulation of Sox9 expression. Oncotarget. 2015;6:35880-92 pubmed 出版商
  174. Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed 出版商
  175. Poitelon Y, Bogni S, Matafora V, Della Flora Nunes G, Hurley E, Ghidinelli M, et al. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat Commun. 2015;6:8303 pubmed 出版商
  176. Okolicsanyi R, Camilleri E, Oikari L, Yu C, Cool S, Van Wijnen A, et al. Human Mesenchymal Stem Cells Retain Multilineage Differentiation Capacity Including Neural Marker Expression after Extended In Vitro Expansion. PLoS ONE. 2015;10:e0137255 pubmed 出版商
  177. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  178. Zhang J, Tripathi D, Jing J, Alexander A, Kim J, Powell R, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol. 2015;17:1259-1269 pubmed 出版商
  179. Mori S, Kodaira M, Ito A, Okazaki M, Kawaguchi N, Hamada Y, et al. Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1) in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT) in Mammary Epithelial Cells. PLoS ONE. 2015;10:e0137486 pubmed 出版商
  180. Shen B, Estevez B, Xu Z, Kreutz B, Karginov A, Bai Y, et al. The interaction of Gα13 with integrin β1 mediates cell migration by dynamic regulation of RhoA. Mol Biol Cell. 2015;26:3658-70 pubmed 出版商
  181. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144 pubmed 出版商
  182. Scott D, Tolbert C, Graham D, Wittchen E, Bear J, Burridge K. N-glycosylation controls the function of junctional adhesion molecule-A. Mol Biol Cell. 2015;26:3205-14 pubmed 出版商
  183. Ducret M, Fabre H, Farges J, Degoul O, Atzeni G, McGuckin C, et al. Production of Human Dental Pulp Cells with a Medicinal Manufacturing Approach. J Endod. 2015;41:1492-9 pubmed 出版商
  184. Burkhalter R, Westfall S, Liu Y, Stack M. Lysophosphatidic Acid Initiates Epithelial to Mesenchymal Transition and Induces β-Catenin-mediated Transcription in Epithelial Ovarian Carcinoma. J Biol Chem. 2015;290:22143-54 pubmed 出版商
  185. Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990 pubmed 出版商
  186. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531 pubmed 出版商
  187. Bian Y, Qian W, Li H, Zhao R, Shan W, Weng X. Pathogenesis of glucocorticoid-induced avascular necrosis: A microarray analysis of gene expression in vitro. Int J Mol Med. 2015;36:678-84 pubmed 出版商
  188. de Carvalho J, Zonari A, de Paula A, Martins T, Gomes D, Goes A. Production of Human Endothelial Cells Free from Soluble Xenogeneic Antigens for Bioartificial Small Diameter Vascular Graft Endothelization. Biomed Res Int. 2015;2015:652474 pubmed 出版商
  189. Lin Y, Bhuwania R, Gromova K, Failla A, Lange T, Riecken K, et al. Drosophila homologue of Diaphanous 1 (DIAPH1) controls the metastatic potential of colon cancer cells by regulating microtubule-dependent adhesion. Oncotarget. 2015;6:18577-89 pubmed
  190. Ruppender N, Larson S, Lakely B, Kollath L, Brown L, Coleman I, et al. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS ONE. 2015;10:e0130565 pubmed 出版商
  191. Fedorenko I, Abel E, Koomen J, Fang B, Wood E, Chen Y, et al. Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene. 2016;35:1225-35 pubmed 出版商
  192. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed 出版商
  193. James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports. 2015;4:1004-15 pubmed 出版商
  194. Min H, Yun H, Lee J, Lee H, Cho J, Jang H, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113 pubmed 出版商
  195. Trerotola M, Ganguly K, Fazli L, Fedele C, Lu H, Dutta A, et al. Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget. 2015;6:14318-28 pubmed
  196. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  197. Ho F, Zhang W, Li Y, Chan B. Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix. Biomaterials. 2015;53:392-405 pubmed 出版商
  198. Yu M, Selvaraj S, Liang Chu M, Aghajani S, Busse M, Yuan J, et al. A resource for cell line authentication, annotation and quality control. Nature. 2015;520:307-11 pubmed 出版商
  199. Haarmann A, Nowak E, Deiß A, van der Pol S, Monoranu C, Kooij G, et al. Soluble VCAM-1 impairs human brain endothelial barrier integrity via integrin α-4-transduced outside-in signalling. Acta Neuropathol. 2015;129:639-52 pubmed 出版商
  200. Ishihara S, Yasuda M, Ishizu A, Ishikawa M, Shirato H, Haga H. Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget. 2015;6:4602-14 pubmed
  201. Marquardt N, Béziat V, Nyström S, Hengst J, Ivarsson M, Kekäläinen E, et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015;194:2467-71 pubmed 出版商
  202. Morris E, Assi K, Salh B, Dedhar S. Integrin-linked kinase links dynactin-1/dynactin-2 with cortical integrin receptors to orient the mitotic spindle relative to the substratum. Sci Rep. 2015;5:8389 pubmed 出版商
  203. Dong A, Wodziak D, Lowe A. Epidermal growth factor receptor (EGFR) signaling requires a specific endoplasmic reticulum thioredoxin for the post-translational control of receptor presentation to the cell surface. J Biol Chem. 2015;290:8016-27 pubmed 出版商
  204. Shafiq M, Jung Y, Kim S. Stem cell recruitment, angiogenesis, and tissue regeneration in substance P-conjugated poly(l-lactide-co-É›-caprolactone) nonwoven meshes. J Biomed Mater Res A. 2015;103:2673-88 pubmed 出版商
  205. Hakanpaa L, Sipilä T, Leppänen V, Gautam P, Nurmi H, Jacquemet G, et al. Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun. 2015;6:5962 pubmed 出版商
  206. Lankford L, Selby T, Becker J, Ryzhuk V, Long C, Farmer D, et al. Early gestation chorionic villi-derived stromal cells for fetal tissue engineering. World J Stem Cells. 2015;7:195-207 pubmed 出版商
  207. Byron A, Askari J, Humphries J, Jacquemet G, Koper E, Warwood S, et al. A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting. Nat Commun. 2015;6:6135 pubmed 出版商
  208. Harrer A, Pilz G, Wipfler P, Oppermann K, Sellner J, Hitzl W, et al. High interindividual variability in the CD4/CD8 T cell ratio and natalizumab concentration levels in the cerebrospinal fluid of patients with multiple sclerosis. Clin Exp Immunol. 2015;180:383-92 pubmed 出版商
  209. Shen Y, Gao M, Ma Y, Yu H, Cui F, Gregersen H, et al. Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration. Colloids Surf B Biointerfaces. 2015;126:188-97 pubmed 出版商
  210. Inaba J, McConnell E, Davis K. Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation. Int J Mol Sci. 2014;15:23705-24 pubmed 出版商
  211. Qiao X, Roth I, Féraille E, Hasler U. Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion. Cell Cycle. 2014;13:3059-75 pubmed 出版商
  212. Elloumi Hannachi I, García J, Shekeran A, García A. Contributions of the integrin β1 tail to cell adhesive forces. Exp Cell Res. 2015;332:212-22 pubmed 出版商
  213. Weber Boyvat M, Kentala H, Lilja J, Vihervaara T, Hanninen R, Zhou Y, et al. OSBP-related protein 3 (ORP3) coupling with VAMP-associated protein A regulates R-Ras activity. Exp Cell Res. 2015;331:278-91 pubmed 出版商
  214. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed 出版商
  215. Hui T, Sørensen E, Rittling S. Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin. Matrix Biol. 2015;41:19-25 pubmed 出版商
  216. Green C, Fraser S, Day M. Insulin-like growth factor 1 increases apical fibronectin in blastocysts to increase blastocyst attachment to endometrial epithelial cells in vitro. Hum Reprod. 2015;30:284-98 pubmed 出版商
  217. Chovancová J, Bernard T, Stehlíková O, Sálek D, Janíková A, Mayer J, et al. Detection of Minimal Residual Disease in Mantle Cell Lymphoma. Establishment of Novel 8-Color Flow Cytometry Approach. Cytometry B Clin Cytom. 2014;: pubmed 出版商
  218. Sugahara K, Braun G, de Mendoza T, Kotamraju V, French R, Lowy A, et al. Tumor-penetrating iRGD peptide inhibits metastasis. Mol Cancer Ther. 2015;14:120-8 pubmed 出版商
  219. Guerrero J, Oliveira H, Catros S, Siadous R, Derkaoui S, Bareille R, et al. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis. Tissue Eng Part A. 2015;21:861-74 pubmed 出版商
  220. Ribeiro Resende V, Araújo Gomes T, de Lima S, Nascimento Lima M, Bargas Rega M, Santiago M, et al. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration. PLoS ONE. 2014;9:e108919 pubmed 出版商
  221. Puig M, Lugo R, Gabasa M, Giménez A, Velásquez A, Galgoczy R, et al. Matrix stiffening and β1 integrin drive subtype-specific fibroblast accumulation in lung cancer. Mol Cancer Res. 2015;13:161-73 pubmed 出版商
  222. Uotila L, Jahan F, Soto Hinojosa L, Melandri E, Grönholm M, Gahmberg C. Specific phosphorylations transmit signals from leukocyte β2 to β1 integrins and regulate adhesion. J Biol Chem. 2014;289:32230-42 pubmed 出版商
  223. Brandau S, Jakob M, Bruderek K, Bootz F, Giebel B, Radtke S, et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS ONE. 2014;9:e106903 pubmed 出版商
  224. Rothan H, Djordjevic I, Bahrani H, Paydar M, Ibrahim F, Abd Rahmanh N, et al. Three-dimensional culture environment increases the efficacy of platelet rich plasma releasate in prompting skin fibroblast differentiation and extracellular matrix formation. Int J Med Sci. 2014;11:1029-38 pubmed 出版商
  225. Romero A, Caceres M, Arancibia R, Silva D, Couve E, Martinez C, et al. Cigarette smoke condensate inhibits collagen gel contraction and prostaglandin E2 production in human gingival fibroblasts. J Periodontal Res. 2015;50:371-9 pubmed 出版商
  226. Yuan S, Guo Y, Zhou X, Shen W, Chen H. PDGFR-? (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int J Clin Exp Pathol. 2014;7:2861-70 pubmed
  227. Juengel E, Makarevic J, Reiter M, Mani J, Tsaur I, Bartsch G, et al. Resistance to the mTOR inhibitor temsirolimus alters adhesion and migration behavior of renal cell carcinoma cells through an integrin ?5- and integrin ?3-dependent mechanism. Neoplasia. 2014;16:291-300 pubmed 出版商
  228. Hashim Y, Worthington J, Allsopp P, Ternan N, Brown E, McCann M, et al. Virgin olive oil phenolics extract inhibit invasion of HT115 human colon cancer cells in vitro and in vivo. Food Funct. 2014;5:1513-9 pubmed 出版商
  229. Mrosewski I, Jork N, Gorte K, Conrad C, Wiegand E, Kohl B, et al. Regulation of osteoarthritis-associated key mediators by TNF? and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. Cell Tissue Res. 2014;357:207-23 pubmed 出版商
  230. Williams K, McNeilly R, Coppolino M. SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion. Mol Biol Cell. 2014;25:2061-70 pubmed 出版商
  231. Kandasamy K, Narayanan K, Ni M, Du C, Wan A, Zink D. Polysulfone membranes coated with polymerized 3,4-dihydroxy-l-phenylalanine are a versatile and cost-effective synthetic substrate for defined long-term cultures of human pluripotent stem cells. Biomacromolecules. 2014;15:2067-78 pubmed 出版商
  232. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  233. Lozano Fernández T, Ballester Antxordoki L, Pérez Temprano N, Rojas E, Sanz D, Iglesias Gaspar M, et al. Potential impact of metal oxide nanoparticles on the immune system: The role of integrins, L-selectin and the chemokine receptor CXCR4. Nanomedicine. 2014;10:1301-10 pubmed 出版商
  234. Mato E, Gonzalez C, Moral A, Pérez J, Bell O, Lerma E, et al. ABCG2/BCRP gene expression is related to epithelial-mesenchymal transition inducer genes in a papillary thyroid carcinoma cell line (TPC-1). J Mol Endocrinol. 2014;52:289-300 pubmed 出版商
  235. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed 出版商
  236. Termini C, Cotter M, Marjon K, Buranda T, Lidke K, Gillette J. The membrane scaffold CD82 regulates cell adhesion by altering α4 integrin stability and molecular density. Mol Biol Cell. 2014;25:1560-73 pubmed 出版商
  237. Li W, Li Y, Song D, Wang X, Liu M, Wu X, et al. Calreticulin protects rat microvascular endothelial cells against microwave radiation-induced injury by attenuating endoplasmic reticulum stress. Microcirculation. 2014;21:506-15 pubmed 出版商
  238. Barbera M, Di Pietro M, Walker E, Brierley C, Macrae S, Simons B, et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut. 2015;64:11-9 pubmed 出版商
  239. Ahn E, Kim Y, Kshitiz -, An S, Afzal J, Lee S, et al. Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials. 2014;35:2401-2410 pubmed 出版商
  240. Romagnoli M, Mineva N, Polmear M, Conrad C, Srinivasan S, Loussouarn D, et al. ADAM8 expression in invasive breast cancer promotes tumor dissemination and metastasis. EMBO Mol Med. 2014;6:278-94 pubmed 出版商
  241. Zhou J, Lu P, Ren H, Zheng Z, Ji J, Liu H, et al. 17?-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury. J Cell Mol Med. 2014;18:326-43 pubmed 出版商
  242. Kim G, Yong Y, Kang H, Park K, Kim S, Lee M, et al. Zwitterionic polymer-coated immunobeads for blood-based cancer diagnostics. Biomaterials. 2014;35:294-303 pubmed 出版商
  243. Lorion C, Faye C, Maret B, Trimaille T, Regnier T, Sommer P, et al. Biosynthetic support based on dendritic poly(L-lysine) improves human skin fibroblasts attachment. J Biomater Sci Polym Ed. 2014;25:136-49 pubmed 出版商
  244. Ghazvini M, Sonneveld P, Kremer A, Franken P, Sacchetti A, Atlasi Y, et al. Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis. PLoS ONE. 2013;8:e73872 pubmed 出版商
  245. Faulk D, Carruthers C, Warner H, Kramer C, Reing J, Zhang L, et al. The effect of detergents on the basement membrane complex of a biologic scaffold material. Acta Biomater. 2014;10:183-93 pubmed 出版商
  246. Kikkawa Y, Ogawa T, Sudo R, Yamada Y, Katagiri F, Hozumi K, et al. The lutheran/basal cell adhesion molecule promotes tumor cell migration by modulating integrin-mediated cell attachment to laminin-511 protein. J Biol Chem. 2013;288:30990-1001 pubmed 出版商
  247. Avanzi S, Leoni V, Rotola A, Alviano F, Solimando L, Lanzoni G, et al. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection. PLoS ONE. 2013;8:e71412 pubmed 出版商
  248. Priglinger C, Szober C, Priglinger S, Merl J, Euler K, Kernt M, et al. Galectin-3 induces clustering of CD147 and integrin-?1 transmembrane glycoprotein receptors on the RPE cell surface. PLoS ONE. 2013;8:e70011 pubmed 出版商
  249. Stover A, Brick D, Nethercott H, Banuelos M, Sun L, O Dowd D, et al. Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res. 2013;91:1247-62 pubmed 出版商
  250. Iwai L, Payne L, Luczynski M, Chang F, Xu H, Clinton R, et al. Phosphoproteomics of collagen receptor networks reveals SHP-2 phosphorylation downstream of wild-type DDR2 and its lung cancer mutants. Biochem J. 2013;454:501-13 pubmed 出版商
  251. Barcus C, Keely P, Eliceiri K, Schuler L. Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem. 2013;288:12722-32 pubmed 出版商
  252. Xu H, Bihan D, Chang F, Huang P, Farndale R, Leitinger B. Discoidin domain receptors promote α1β1- and α2β1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLoS ONE. 2012;7:e52209 pubmed 出版商
  253. Yang Y, Li J, Pan X, Zhou P, Yu X, Cao H, et al. Co-culture with mesenchymal stem cells enhances metabolic functions of liver cells in bioartificial liver system. Biotechnol Bioeng. 2013;110:958-68 pubmed 出版商
  254. Moravec R, Conger K, D Souza R, Allison A, Casanova J. BRAG2/GEP100/IQSec1 interacts with clathrin and regulates ?5?1 integrin endocytosis through activation of ADP ribosylation factor 5 (Arf5). J Biol Chem. 2012;287:31138-47 pubmed 出版商
  255. Steinberg F, Heesom K, Bass M, Cullen P. SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways. J Cell Biol. 2012;197:219-30 pubmed 出版商
  256. Adesida A, Mulet Sierra A, Jomha N. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther. 2012;3:9 pubmed 出版商
  257. Yuan S, Chen R, Shen W, Chen H, Zhou X. Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol. 2012;15:5-12 pubmed 出版商
  258. Fernández R, Ruiz Miró M, Dolcet X, Aldea M, Gari E. Cyclin D1 interacts and collaborates with Ral GTPases enhancing cell detachment and motility. Oncogene. 2011;30:1936-46 pubmed 出版商
  259. Farias V, Linares Fernández J, Peñalver J, Payá Colmenero J, Ferrón G, Duran E, et al. Human umbilical cord stromal stem cell express CD10 and exert contractile properties. Placenta. 2011;32:86-95 pubmed 出版商
  260. Chui K, Trivedi A, Cheng C, Cherbavaz D, Dazin P, Huynh A, et al. Characterization and functionality of proliferative human Sertoli cells. Cell Transplant. 2011;20:619-35 pubmed 出版商
  261. Qi H, Zheng X, Yuan X, Pflugfelder S, Li D. Potential localization of putative stem/progenitor cells in human bulbar conjunctival epithelium. J Cell Physiol. 2010;225:180-5 pubmed 出版商
  262. Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol Med. 2010;14:337-50 pubmed 出版商
  263. Campioni D, Rizzo R, Stignani M, Melchiorri L, Ferrari L, Moretti S, et al. A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs. Cytometry B Clin Cytom. 2009;76:225-30 pubmed 出版商
  264. Campioni D, Moretti S, Ferrari L, Punturieri M, Castoldi G, Lanza F. Immunophenotypic heterogeneity of bone marrow-derived mesenchymal stromal cells from patients with hematologic disorders: correlation with bone marrow microenvironment. Haematologica. 2006;91:364-8 pubmed
  265. Chen Z, Evans W, Pflugfelder S, Li D. Gap junction protein connexin 43 serves as a negative marker for a stem cell-containing population of human limbal epithelial cells. Stem Cells. 2006;24:1265-73 pubmed
  266. Contamin H, Loizon S, Bourreau E, Michel J, Garraud O, Mercereau Puijalon O, et al. Flow cytometry identification and characterization of mononuclear cell subsets in the neotropical primate Saimiri sciureus (squirrel monkey). J Immunol Methods. 2005;297:61-71 pubmed