这是一篇来自已证抗体库的有关人类 S100B的综述,是根据131篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合S100B 抗体。
S100B 同义词: NEF; S100; S100-B; S100beta

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 7a). Nutrients (2022) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化; 小鼠; 图 2e
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化在小鼠样本上 (图 2e). Cell Mol Gastroenterol Hepatol (2022) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-石蜡切片; 人类; 图 s11
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, Ab52642)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s11). Front Physiol (2022) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫印迹; 大鼠; 1:1000; 图 5b, s1c
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b, s1c). J Cell Mol Med (2022) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2a
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2a). Sci Adv (2022) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化; 小鼠; 1:2000; 图 2j
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2j). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化; 大鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 6a). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. elife (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫细胞化学; 大鼠; 图 2h
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫细胞化学在大鼠样本上 (图 2h). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 3e
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 3e). Front Aging Neurosci (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫细胞化学; 小鼠; 图 2d
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫细胞化学在小鼠样本上 (图 2d). Sci Adv (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化; 小鼠; 1:1000; 图 3d
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3d). J Neurosci (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 流式细胞仪; 小鼠; 1:100; 图 5d
  • 免疫细胞化学; 小鼠; 1:100; 图 5h
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5h). NPJ Regen Med (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-自由浮动切片; 大鼠; 图 1d
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-自由浮动切片在大鼠样本上 (图 1d). Neurobiol Dis (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化; 小鼠; 1:200; 图 5f
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, Ab52642)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5f). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化; 小鼠; 1:600; 图 4l
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 4l). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3b
  • 免疫细胞化学; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4a). Histochem Cell Biol (2021) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 5a
  • 免疫细胞化学; 人类; 1:200; 图 2d
  • 免疫印迹; 人类; 1:500; 图 2c
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 5a), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2c). Theranostics (2020) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化; 小鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 1b). Cell (2019) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4c
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4c). PLoS Genet (2018) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2h
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2h). Acta Neuropathol Commun (2018) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-冰冻切片; 小鼠; 图 3
  • 免疫细胞化学; 小鼠; 图 4g
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3) 和 被用于免疫细胞化学在小鼠样本上 (图 4g). Wound Repair Regen (2018) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1c
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s3
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s3). Nature (2016) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫细胞化学; 小鼠; 1:500; 图 1d
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, AB52642)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1d). Nat Neurosci (2016) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, EP1576Y)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2016) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫细胞化学在人类样本上浓度为1:200. F1000Res (2015) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫印迹; 人类; 1:5000; 图 6b
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6b). Front Cell Neurosci (2015) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Front Cell Neurosci (2015) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Neurobiol Dis (2015) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫细胞化学; 小鼠; 1 ug/ml
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫细胞化学在小鼠样本上浓度为1 ug/ml. Biomaterials (2015) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫印迹; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, AB52642)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Vis (2014) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci Res (2014) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EP1576Y)
  • 免疫组化; 小鼠; 1:400
艾博抗(上海)贸易有限公司S100钙结合蛋白B抗体(Abcam, ab52642)被用于被用于免疫组化在小鼠样本上浓度为1:400. Cell Transplant (2015) ncbi
赛默飞世尔
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 4e
赛默飞世尔S100钙结合蛋白B抗体(生活技术, MA1-26621)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 4e). Mol Ther Methods Clin Dev (2022) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4a
赛默飞世尔S100钙结合蛋白B抗体(Lav Vision, 4C4.9)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4a). J Comp Neurol (2019) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 1
赛默飞世尔S100钙结合蛋白B抗体(Thermo Scientific, 4C4.9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 1). Neurosci Lett (2017) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化; 人类; 1:100
赛默飞世尔S100钙结合蛋白B抗体(Thermo Scientific, 4c4.9)被用于被用于免疫组化在人类样本上浓度为1:100. Balkan Med J (2016) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 大鼠; 图 4b
赛默飞世尔S100钙结合蛋白B抗体(Thermo Scientific, 4C4.9)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4b). Turk Neurosurg (2017) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔S100钙结合蛋白B抗体(Thermo Fisher, MA5-12966)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 人类; 1:1600; 图 2a
赛默飞世尔S100钙结合蛋白B抗体(Neomarkers, 4C4.9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1600 (图 2a). Am J Dermatopathol (2016) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 人类; 图 1c
赛默飞世尔S100钙结合蛋白B抗体(Thermo Scientific, 4C4.9)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Exp Clin Cancer Res (2015) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化; 人类; 1:100; 图 12
赛默飞世尔S100钙结合蛋白B抗体(Thermo Fisher Scientific, 4C4.9)被用于被用于免疫组化在人类样本上浓度为1:100 (图 12). Rom J Morphol Embryol (2015) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 人类; 图 5a
  • 免疫组化-石蜡切片; 小鼠; 图 5b
赛默飞世尔S100钙结合蛋白B抗体(Thermo Scientific, 4C4.9)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Oncotarget (2015) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔S100钙结合蛋白B抗体(Zymed, 4c4.9)被用于被用于免疫组化-石蜡切片在人类样本上. Oncol Lett (2015) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化; 人类; 图 1
赛默飞世尔S100钙结合蛋白B抗体(Thermo Scientific, 4C4.9)被用于被用于免疫组化在人类样本上 (图 1). Histochem Cell Biol (2015) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔S100钙结合蛋白B抗体(Thermo Fisher Scientific, 4C4.9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔S100钙结合蛋白B抗体(Thermo Fisher Scientific, 4C4.9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛默飞世尔S100钙结合蛋白B抗体(Lab Vision, 4c4.9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(4C4.9)
  • 免疫组化; 人类; 1:50
赛默飞世尔S100钙结合蛋白B抗体(Zymed Laboratories, 4c4.9)被用于被用于免疫组化在人类样本上浓度为1:50. Chin Med J (Engl) (2006) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B32.1)
  • 免疫组化; 大鼠; 1:300; 图 1k
圣克鲁斯生物技术S100钙结合蛋白B抗体(Santa Cruz, sc-58839)被用于被用于免疫组化在大鼠样本上浓度为1:300 (图 1k). Neuroscience (2016) ncbi
小鼠 单克隆(19)
  • 免疫组化-冰冻切片; 大鼠; 1:250
圣克鲁斯生物技术S100钙结合蛋白B抗体(Santa Cruz, sc-136061)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:250. Hear Res (2014) ncbi
小鼠 单克隆(9A11B9)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术S100钙结合蛋白B抗体(Santa Cruz Biotechnology, 9A11B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Acta Neuropathol (2014) ncbi
Novus Biologicals
小鼠 单克隆(4C4.9)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1a
  • 免疫组化; 人类; 1:400; 图 4c
  • 免疫印迹; 人类; 1:200; 图 2d, 2e
Novus BiologicalsS100钙结合蛋白B抗体(Novus, NBP2-29403)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1a), 被用于免疫组化在人类样本上浓度为1:400 (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 2d, 2e). J Cancer (2021) ncbi
西格玛奥德里奇
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s2c
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s2c). Neurotherapeutics (2022) ncbi
小鼠 单克隆(SH-B4)
  • 免疫组化; 小鼠; 1:500; 图 1e
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2657)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1e). Mol Brain (2021) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 大鼠; 1:200; 图 4a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a). Stem Cell Reports (2021) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 小鼠; 图 s3a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, s2532)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3a). iScience (2021) ncbi
小鼠 单克隆(CL2720)
  • 免疫组化; 小鼠; 1:400; 图 7a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, AMAB91038)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 7a). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 s1a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 s1a). bioRxiv (2021) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 图 5a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2532)被用于被用于免疫组化在小鼠样本上 (图 5a). Sci Rep (2021) ncbi
小鼠 单克隆(CL2720)
  • 免疫组化; 人类; 1:1000; 图 3a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, AMAB91038)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3a). NPJ Parkinsons Dis (2020) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:500; 图 2g
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2g). Cell Stem Cell (2020) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 s3a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 s3a). Sci Rep (2020) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 大鼠; 1:1000; 图 2f
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2532)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2f). J Comp Neurol (2019) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 大鼠; 1:500-1:2000; 图 12k
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500-1:2000 (图 12k). J Comp Neurol (2019) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 小鼠; 图 s2l
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2l). Cell (2019) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 人类; 图 s5b
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2532)被用于被用于免疫细胞化学在人类样本上 (图 s5b). Neuron (2019) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). Science (2018) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2c
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma Aldrich, S2532)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2c). elife (2018) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 小鼠; 图 2a1, 2a2, 2a3, 2a4
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a1, 2a2, 2a3, 2a4). Epilepsia (2017) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:500; 图 6a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(SH-B4)
  • 免疫细胞化学; 人类; 1:50; 图 4a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2657)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4a). Exp Ther Med (2017) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:1000; 图 s7a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s7a). Sci Rep (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-石蜡切片; 人类; 图 3a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). J Cell Physiol (2017) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 大鼠; 图 7c
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 7c). Toxicology (2016) ncbi
小鼠 单克隆(SH-B4)
  • 免疫组化; 小鼠; 1:1000; 图 s7b
西格玛奥德里奇S100钙结合蛋白B抗体(SIGMA, S2657)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s7b). Science (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 4a
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 4a). Acta Histochem (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 大鼠; 图 2c
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫细胞化学在大鼠样本上 (图 2c). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:1000; 图 2
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:100; 图 s4
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s4). Sci Rep (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 人类; 1:500; 图 4
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4). Glia (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 人类; 1:500; 表 3
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 3
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (表 3) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 3). J Neuroinflammation (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫印迹; 小鼠; 1:1000; 表 1
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S-2532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1g
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, SH-B1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1g). Nat Commun (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:1000; 图 1
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 大鼠; 1:500; 图 s2
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2532)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 s2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:100; 图 2
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 人类; 1:500; 图 2
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2532)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; giant panda; 1:100; 图 3
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在giant panda样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 大鼠; 图 s1
西格玛奥德里奇S100钙结合蛋白B抗体(sigma, s2532)被用于被用于免疫细胞化学在大鼠样本上 (图 s1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 小鼠; 1:1000
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532;)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(SH-B4)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 4c
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2657)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 4c). J Musculoskelet Neuronal Interact (2015) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2m
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S-2532)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2m). J Neurosci (2015) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 人类
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫细胞化学在人类样本上. World J Stem Cells (2015) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:100. Dev Biol (2015) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 大鼠; 1:200; 图 3
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 大鼠; 1:1000
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2532)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Dev Growth Differ (2014) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 大鼠; 1:5000
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2532)被用于被用于免疫组化在大鼠样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, SHB1)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Mol Endocrinol (2014) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 人类; 1:300
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫细胞化学在人类样本上浓度为1:300. J Vis Exp (2014) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 人类; 1:250
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫细胞化学在人类样本上浓度为1:250. J Comp Neurol (2014) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-自由浮动切片; 小鼠; 1:300
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S-2532)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:300. Glia (2014) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 小鼠; 1:5000
  • 免疫细胞化学; 人类; 1:2500
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 和 被用于免疫细胞化学在人类样本上浓度为1:2500. Cell Mol Neurobiol (2014) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:10,000
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S-2532)被用于被用于免疫组化在小鼠样本上浓度为1:10,000. Hippocampus (2014) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:500. Nat Neurosci (2013) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-自由浮动切片; 小鼠; 1:300
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S-2532)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:300. Glia (2013) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
  • 免疫细胞化学; 小鼠
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2532)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 和 被用于免疫细胞化学在小鼠样本上. Glia (2013) ncbi
小鼠 单克隆(SH-B1)
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Stem Cells Transl Med (2012) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Histochem Cytochem (2012) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurosci (2012) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 人类
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在人类样本上. Neuropsychopharmacology (2012) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-自由浮动切片; 小鼠; 1:20,000
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S-2532)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:20,000. J Comp Neurol (2011) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma-Aldrich, S2532)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 大鼠; 1:500
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化在小鼠样本上浓度为1:2000. J Comp Neurol (2009) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, S2532)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Comp Neurol (2007) ncbi
小鼠 单克隆(SH-B1)
  • 免疫组化-自由浮动切片; 大鼠; 1:20,000
西格玛奥德里奇S100钙结合蛋白B抗体(Sigma, SHB1)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:20,000. J Comp Neurol (2005) ncbi
碧迪BD
小鼠 单克隆(19/S100B)
  • 流式细胞仪; 人类; 图 1b
碧迪BDS100钙结合蛋白B抗体(BD Biosciences, 19/S100B)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2016) ncbi
小鼠 单克隆(19/S100B)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
碧迪BDS100钙结合蛋白B抗体(BD Biosciences, 19/S100B)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). Nat Commun (2014) ncbi
小鼠 单克隆(19/S100B)
  • 免疫组化-石蜡切片; 人类; 1:500
碧迪BDS100钙结合蛋白B抗体(BD Transduction Laboratories, 612376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. J Comp Neurol (2012) ncbi
文章列表
  1. Tyrtyshnaia A, Konovalova S, Ponomarenko A, Egoraeva A, Manzhulo I. Fatty Acid-Derived N-acylethanolamines Dietary Supplementation Attenuates Neuroinflammation and Cognitive Impairment in LPS Murine Model. Nutrients. 2022;14: pubmed 出版商
  2. Prabhakar S, Beauchamp R, Cheah P, Yoshinaga A, Haidar E, Lule S, et al. Gene replacement therapy in a schwannoma mouse model of neurofibromatosis type 2. Mol Ther Methods Clin Dev. 2022;26:169-180 pubmed 出版商
  3. Duan S, Sawyer T, Sontz R, Wieland B, Diaz A, Merchant J. GFAP-directed Inactivation of Men1 Exploits Glial Cell Plasticity in Favor of Neuroendocrine Reprogramming. Cell Mol Gastroenterol Hepatol. 2022;14:1025-1051 pubmed 出版商
  4. Rees T, Russo A, O Carroll S, Hay D, Walker C. CGRP and the Calcitonin Receptor are Co-Expressed in Mouse, Rat and Human Trigeminal Ganglia Neurons. Front Physiol. 2022;13:860037 pubmed 出版商
  5. Nuber S, Chung C, Tardiff D, Bechade P, McCaffery T, Shimanaka K, et al. A Brain-Penetrant Stearoyl-CoA Desaturase Inhibitor Reverses α-Synuclein Toxicity. Neurotherapeutics. 2022;19:1018-1036 pubmed 出版商
  6. Hu Q, Liu X, Liu Z, Liu Z, Zhang H, Zhang Q, et al. Dexmedetomidine reduces enteric glial cell injury induced by intestinal ischaemia-reperfusion injury through mitochondrial localization of TERT. J Cell Mol Med. 2022;26:2594-2606 pubmed 出版商
  7. Georgiou L, Echeverr xed a A, Georgiou A, Kuhn B. Ca+ activity maps of astrocytes tagged by axoastrocytic AAV transfer. Sci Adv. 2022;8:eabe5371 pubmed 出版商
  8. Xiao D, Jin K, Qiu S, Lei Q, Huang W, Chen H, et al. In vivo Regeneration of Ganglion Cells for Vision Restoration in Mammalian Retinas. Front Cell Dev Biol. 2021;9:755544 pubmed 出版商
  9. Yadav A, Huang T, Chen S, Ramasamy T, Hsueh Y, Lin S, et al. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination. J Neuroinflammation. 2021;18:238 pubmed 出版商
  10. Du J, Yi M, Zhou F, He W, Yang A, Qiu M, et al. S100B is selectively expressed by gray matter protoplasmic astrocytes and myelinating oligodendrocytes in the developing CNS. Mol Brain. 2021;14:154 pubmed 出版商
  11. McClenahan F, Dimitriou C, Koutsakis C, Dimitrakopoulos D, Arampatzis A, Kakouri P, et al. Isolation of neural stem and oligodendrocyte progenitor cells from the brain of live rats. Stem Cell Reports. 2021;16:2534-2547 pubmed 出版商
  12. Farhy Tselnicker I, Boisvert M, Liu H, Dowling C, Erikson G, Blanco Suarez E, et al. Activity-dependent modulation of synapse-regulating genes in astrocytes. elife. 2021;10: pubmed 出版商
  13. Wang G, Li H, Cui X, Xu T, Dong M, Li S, et al. S100A1 is a Potential Biomarker for Papillary Thyroid Carcinoma Diagnosis and Prognosis. J Cancer. 2021;12:5760-5771 pubmed 出版商
  14. Sugiyama T, Murao N, Kadowaki H, Takao K, Miyakawa T, Matsushita Y, et al. ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. iScience. 2021;24:102758 pubmed 出版商
  15. Emre C, Do K, Jun B, Hjorth E, Alcalde S, Kautzmann M, et al. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:116 pubmed 出版商
  16. Zhang X, Zhao S, Yuan Q, Zhu L, Li F, Wang H, et al. TXNIP, a novel key factor to cause Schwann cell dysfunction in diabetic peripheral neuropathy, under the regulation of PI3K/Akt pathway inhibition-induced DNMT1 and DNMT3a overexpression. Cell Death Dis. 2021;12:642 pubmed 出版商
  17. Ehret F, Moreno Traspas R, Neumuth M, Hamann B, Lasse D, Kempermann G. Notch3-Dependent Effects on Adult Neurogenesis and Hippocampus-Dependent Learning in a Modified Transgenic Model of CADASIL. Front Aging Neurosci. 2021;13:617733 pubmed 出版商
  18. Pan S, Zhao N, Feng X, Jie Y, Jin Z. Conversion of mouse embryonic fibroblasts into neural crest cells and functional corneal endothelia by defined small molecules. Sci Adv. 2021;7: pubmed 出版商
  19. Dhanya S, Hasan G. Purkinje Neurons with Loss of STIM1 Exhibit Age-Dependent Changes in Gene Expression and Synaptic Components. J Neurosci. 2021;41:3777-3798 pubmed 出版商
  20. Xiao Z, Yang X, Liu Z, Shao Z, Song C, Zhang K, et al. GASC1 promotes glioma progression by enhancing NOTCH1 signaling. Mol Med Rep. 2021;23: pubmed 出版商
  21. Di Luca M, Fitzpatrick E, Burtenshaw D, Liu W, Helt J, Hakimjavadi R, et al. The calcium binding protein S100β marks hedgehog-responsive resident vascular stem cells within vascular lesions. NPJ Regen Med. 2021;6:10 pubmed 出版商
  22. Andrews M, Mukhtar T, Eze U, Simoneau C, Perez Y, Mostajo Radji M, et al. Tropism of SARS-CoV-2 for Developing Human Cortical Astrocytes. bioRxiv. 2021;: pubmed 出版商
  23. Patkar O, Caruso M, Teakle N, Keshvari S, Bush S, Pridans C, et al. Analysis of homozygous and heterozygous Csf1r knockout in the rat as a model for understanding microglial function in brain development and the impacts of human CSF1R mutations. Neurobiol Dis. 2021;151:105268 pubmed 出版商
  24. Wright C, Schneider S, Smith Edwards K, Mafra F, Leembruggen A, Gonzalez M, et al. scRNA-Seq Reveals New Enteric Nervous System Roles for GDNF, NRTN, and TBX3. Cell Mol Gastroenterol Hepatol. 2021;11:1548-1592.e1 pubmed 出版商
  25. Yoon S, Bae Y, Oh S, Song W, Chang H, Kim M. Altered hippocampal gene expression, glial cell population, and neuronal excitability in aminopeptidase P1 deficiency. Sci Rep. 2021;11:932 pubmed 出版商
  26. Vandenabeele M, Veys L, Lemmens S, Hadoux X, Gelders G, Masin L, et al. The AppNL-G-F mouse retina is a site for preclinical Alzheimer's disease diagnosis and research. Acta Neuropathol Commun. 2021;9:6 pubmed 出版商
  27. Kano M, Takanashi M, Oyama G, Yoritaka A, Hatano T, Shiba Fukushima K, et al. Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations. NPJ Parkinsons Dis. 2020;6:33 pubmed 出版商
  28. Horiguchi K, Yoshida S, Tsukada T, Fujiwara K, Nakakura T, Hasegawa R, et al. Cluster of differentiation (CD) 9-positive mouse pituitary cells are adult stem/progenitor cells. Histochem Cell Biol. 2021;155:391-404 pubmed 出版商
  29. Huang C, Lu S, Huang T, Huang B, Sun H, Yang S, et al. FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells. Theranostics. 2020;10:2817-2831 pubmed 出版商
  30. Wu Z, Parry M, Hou X, Liu M, Wang H, Cain R, et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington's disease. Nat Commun. 2020;11:1105 pubmed 出版商
  31. Kjell J, Fischer Sternjak J, Thompson A, Friess C, Sticco M, Salinas F, et al. Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regulators of Adult Neurogenesis. Cell Stem Cell. 2020;26:277-293.e8 pubmed 出版商
  32. Nomura Komoike K, Saitoh F, Fujieda H. Phosphatidylserine recognition and Rac1 activation are required for Müller glia proliferation, gliosis and phagocytosis after retinal injury. Sci Rep. 2020;10:1488 pubmed 出版商
  33. Yokoyama T, Yamamoto Y, Hirakawa M, Kato K, Saino T. Vesicular nucleotide transporter-immunoreactive type I cells associated with P2X3-immunoreactive nerve endings in the rat carotid body. J Comp Neurol. 2019;: pubmed 出版商
  34. Miralles C, Taylor M, Bear J, Fekete C, George S, Li Y, et al. Expression of protocadherin-γC4 protein in the rat brain. J Comp Neurol. 2019;: pubmed 出版商
  35. Berg D, Su Y, Jimenez Cyrus D, Patel A, Huang N, Morizet D, et al. A Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis. Cell. 2019;177:654-668.e15 pubmed 出版商
  36. Kalamakis G, Brune D, Ravichandran S, Bolz J, Fan W, Ziebell F, et al. Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell. 2019;: pubmed 出版商
  37. McDermott L, Weir G, Themistocleous A, Segerdahl A, Blesneac I, Baskozos G, et al. Defining the Functional Role of NaV1.7 in Human Nociception. Neuron. 2019;101:905-919.e8 pubmed 出版商
  38. Koike T, Tanaka S, Hirahara Y, Oe S, Kurokawa K, Maeda M, et al. Morphological characteristics of p75 neurotrophin receptor-positive cells define a new type of glial cell in the rat dorsal root ganglia. J Comp Neurol. 2019;527:2047-2060 pubmed 出版商
  39. Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science. 2018;362: pubmed 出版商
  40. Konjikusic M, Yeetong P, Boswell C, Lee C, Roberson E, Ittiwut R, et al. Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development. PLoS Genet. 2018;14:e1007817 pubmed 出版商
  41. Coover R, Healy T, Guo L, Chaney K, Hennigan R, Thomson C, et al. Tonic ATP-mediated growth suppression in peripheral nerve glia requires arrestin-PP2 and is evaded in NF1. Acta Neuropathol Commun. 2018;6:127 pubmed 出版商
  42. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  43. Xu K, Pan X, Qiu X, Wang D, Dong N, Yang L, et al. Neural crest-derived cells migrate from nerve to participate in Achilles tendon remodeling. Wound Repair Regen. 2018;26:54-63 pubmed 出版商
  44. Zou J, Zhang B, Gutmann D, Wong M. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner. Epilepsia. 2017;58:2053-2063 pubmed 出版商
  45. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  46. Zhu M, Ma H, Zhan Z, Liu C, Luo W, Zhao G. Detection of auto antibodies and transplantation of cultured autologous melanocytes for the treatment of vitiligo. Exp Ther Med. 2017;13:23-28 pubmed 出版商
  47. Cobo J, Abbate F, de Vicente J, Cobo J, Vega J. Searching for proprioceptors in human facial muscles. Neurosci Lett. 2017;640:1-5 pubmed 出版商
  48. Li Y, Tzatzalos E, Kwan K, Grumet M, Cai L. Transcriptional Regulation of Notch1 Expression by Nkx6.1 in Neural Stem/Progenitor Cells during Ventral Spinal Cord Development. Sci Rep. 2016;6:38665 pubmed 出版商
  49. Diaz Romero J, Kürsener S, Kohl S, Nesic D. S100B?+?A1 CELISA: A Novel Potency Assay and Screening Tool for Redifferentiation Stimuli of Human Articular Chondrocytes. J Cell Physiol. 2017;232:1559-1570 pubmed 出版商
  50. Lin C, Huang S, Tung C, Chou C, Gau S, Huang H. Analysis of Genome-Wide Monoallelic Expression Patterns in Three Major Cell Types of Mouse Visual Cortex Using Laser Capture Microdissection. PLoS ONE. 2016;11:e0163663 pubmed 出版商
  51. Tonyali S, Yazici S, Yeşilırmak A, Ergen A. The Ewing's Sarcoma Family of Tumors of Urinary Bladder: A Case Report and Review of the Literature. Balkan Med J. 2016;33:462-6 pubmed 出版商
  52. Ozbek Z, Kocman A, Ozatik O, Söztutar E, Ozkara E, Köse A, et al. Nerve Tissue Prefabrication Inside the Rat Femoral Bone: Does It Work?. Turk Neurosurg. 2017;27:648-655 pubmed 出版商
  53. Frost H, Kodama A, Ekstrom P, Dahlin L. G-CSF prevents caspase 3 activation in Schwann cells after sciatic nerve transection, but does not improve nerve regeneration. Neuroscience. 2016;334:55-63 pubmed 出版商
  54. Nishida T, Tsubota M, Kawaishi Y, Yamanishi H, Kamitani N, Sekiguchi F, et al. Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. Toxicology. 2016;365:48-58 pubmed 出版商
  55. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  56. Nooh H, Nour Eldien N. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem. 2016;118:588-595 pubmed 出版商
  57. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  58. Liu W, Meng Z, Liu H, Li W, Wu Q, Zhang X, et al. Hepatic epithelioid angiomyolipoma is a rare and potentially severe but treatable tumor: A report of three cases and review of the literature. Oncol Lett. 2016;11:3669-3675 pubmed
  59. Villarreal A, Rosciszewski G, Murta V, Cadena V, Usach V, Dodes Traian M, et al. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes. Front Cell Neurosci. 2016;10:139 pubmed 出版商
  60. Quintes S, Brinkmann B, Ebert M, Fröb F, Kungl T, Arlt F, et al. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nat Neurosci. 2016;19:1050-1059 pubmed 出版商
  61. Sawada Y, Konno A, Nagaoka J, Hirai H. Inflammation-induced reversible switch of the neuron-specific enolase promoter from Purkinje neurons to Bergmann glia. Sci Rep. 2016;6:27758 pubmed 出版商
  62. Takeo Y, Kurabayashi N, Nguyen M, Sanada K. The G protein-coupled receptor GPR157 regulates neuronal differentiation of radial glial progenitors through the Gq-IP3 pathway. Sci Rep. 2016;6:25180 pubmed 出版商
  63. Yang Y, Fang J, Li D, Wang L, Ji N, Zhang J. Recurrent intracranial neurenteric cyst with malignant transformation: A case report and literature review. Oncol Lett. 2016;11:3395-3402 pubmed
  64. Almad A, Doreswamy A, Gross S, Richard J, Huo Y, Haughey N, et al. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia. 2016;64:1154-69 pubmed 出版商
  65. Bahia El Idrissi N, Bosch S, Ramaglia V, Aronica E, Baas F, Troost D. Complement activation at the motor end-plates in amyotrophic lateral sclerosis. J Neuroinflammation. 2016;13:72 pubmed 出版商
  66. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  67. Krishnan V, White Z, McMahon C, Hodgetts S, Fitzgerald M, Shavlakadze T, et al. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol. 2016;75:464-78 pubmed 出版商
  68. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  69. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  70. Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun. 2016;7:11100 pubmed 出版商
  71. Sreekanthreddy P, Gromnicova R, Davies H, Phillips J, Romero I, Male D. A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions. F1000Res. 2015;4:1279 pubmed 出版商
  72. Sundarkrishnan L, Bradish J, Oliai B, Hosler G. Cutaneous Cellular Pseudoglandular Schwannoma: An Unusual Histopathologic Variant. Am J Dermatopathol. 2016;38:315-8 pubmed 出版商
  73. Schoen M, Reichel J, Demestre M, Putz S, Deshpande D, Proepper C, et al. Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons. Front Cell Neurosci. 2015;9:496 pubmed 出版商
  74. Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. 17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Sci Rep. 2016;6:18980 pubmed 出版商
  75. Juranek J, Daffu G, Wojtkiewicz J, Lacomis D, Kofler J, Schmidt A. Receptor for Advanced Glycation End Products and its Inflammatory Ligands are Upregulated in Amyotrophic Lateral Sclerosis. Front Cell Neurosci. 2015;9:485 pubmed 出版商
  76. Janmaat C, de Rooij K, Locher H, de Groot S, de Groot J, Frijns J, et al. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins. PLoS ONE. 2015;10:e0145235 pubmed 出版商
  77. van Nierop G, Janssen M, Mitterreiter J, van de Vijver D, De Swart R, Haagmans B, et al. Intrathecal CD4(+) and CD8(+) T-cell responses to endogenously synthesized candidate disease-associated human autoantigens in multiple sclerosis patients. Eur J Immunol. 2016;46:347-53 pubmed 出版商
  78. Li L, Xu L, Yan J, Zhen Z, Ji Y, Liu C, et al. CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34:129 pubmed 出版商
  79. Ren Q, Peng M, Dong Y, Zhang Y, Chen M, Yin N, et al. Surgery plus anesthesia induces loss of attention in mice. Front Cell Neurosci. 2015;9:346 pubmed 出版商
  80. Costache M, Dumitru A, Pătraşcu O, Popa Cherecheanu D, Bădilă P, Miu J, et al. A challenging case of ocular melanoma. Rom J Morphol Embryol. 2015;56:817-22 pubmed
  81. Prescott H, Manning C, Gardner A, Ritchie W, Pizzi R, Girling S, et al. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells. PLoS ONE. 2015;10:e0138840 pubmed 出版商
  82. Love J, Shah S. Ribosomal trafficking is reduced in Schwann cells following induction of myelination. Front Cell Neurosci. 2015;9:306 pubmed 出版商
  83. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  84. Liu Y, Miao Q, Yuan J, Han S, Zhang P, Li S, et al. Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo. J Neurosci. 2015;35:9336-55 pubmed 出版商
  85. Spang C, Harandi V, Alfredson H, Forsgren S. Marked innervation but also signs of nerve degeneration in between the Achilles and plantaris tendons and presence of innervation within the plantaris tendon in midportion Achilles tendinopathy. J Musculoskelet Neuronal Interact. 2015;15:197-206 pubmed
  86. Alonso Curbelo D, Osterloh L, Cañón E, Calvo T, Martínez Herranz R, Karras P, et al. RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development. Oncotarget. 2015;6:11848-62 pubmed
  87. Watanabe S, Sanuki R, Sugita Y, Imai W, Yamazaki R, Kozuka T, et al. Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. J Neurosci. 2015;35:8004-20 pubmed 出版商
  88. Cao Y, Zhu M, Mao R, Cao R, Yu G, Niu A. Oncocytic carcinoma of the salivary gland with thymoma: A case report and review of the literature. Oncol Lett. 2015;9:681-684 pubmed
  89. Lankford L, Selby T, Becker J, Ryzhuk V, Long C, Farmer D, et al. Early gestation chorionic villi-derived stromal cells for fetal tissue engineering. World J Stem Cells. 2015;7:195-207 pubmed 出版商
  90. Ehret F, Vogler S, Pojar S, Elliott D, Bradke F, Steiner B, et al. Mouse model of CADASIL reveals novel insights into Notch3 function in adult hippocampal neurogenesis. Neurobiol Dis. 2015;75:131-41 pubmed 出版商
  91. De Waele J, Reekmans K, Daans J, Goossens H, Berneman Z, Ponsaerts P. 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials. 2015;41:122-31 pubmed 出版商
  92. Cui W, Mizukami H, Yanagisawa M, Aida T, Nomura M, Isomura Y, et al. Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance. J Neurosci. 2014;34:16273-85 pubmed 出版商
  93. Serinagaoglu Y, Paré J, Giovannini M, Cao X. Nf2-Yap signaling controls the expansion of DRG progenitors and glia during DRG development. Dev Biol. 2015;398:97-109 pubmed 出版商
  94. Scholze A, Foo L, Mulinyawe S, Barres B. BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. PLoS ONE. 2014;9:e110668 pubmed 出版商
  95. Teh D, Ishizuka T, Yawo H. Regulation of later neurogenic stages of adult-derived neural stem/progenitor cells by L-type Ca2+ channels. Dev Growth Differ. 2014;56:583-94 pubmed 出版商
  96. Dharmarajan S, Gurel Z, Wang S, Sorenson C, Sheibani N, Belecky Adams T. Bone morphogenetic protein 7 regulates reactive gliosis in retinal astrocytes and Müller glia. Mol Vis. 2014;20:1085-108 pubmed
  97. Cabo R, Alonso P, Viña E, Vázquez G, Gago A, Feito J, et al. ASIC2 is present in human mechanosensory neurons of the dorsal root ganglia and in mechanoreceptors of the glabrous skin. Histochem Cell Biol. 2015;143:267-76 pubmed 出版商
  98. Pál G, Lovas G, Dobolyi A. Induction of transforming growth factor beta receptors following focal ischemia in the rat brain. PLoS ONE. 2014;9:e106544 pubmed 出版商
  99. Sajin M, Luchian M, Hodorogea Prisăcaru A, Dumitru A, Pătraşcu O, Costache D, et al. Trichilemmal carcinoma - a rare cutaneous malignancy: report of two cases. Rom J Morphol Embryol. 2014;55:687-91 pubmed
  100. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  101. Maarouf C, Kokjohn T, Walker D, Whiteside C, Kalback W, Whetzel A, et al. Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease. PLoS ONE. 2014;9:e105784 pubmed 出版商
  102. Man P, Wells T, Carter D. Cellular distribution of Egr1 transcription in the male rat pituitary gland. J Mol Endocrinol. 2014;53:271-80 pubmed 出版商
  103. Abazyan S, Yang E, Abazyan B, Xia M, Yang C, Rojas C, et al. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res. 2014;92:1659-68 pubmed 出版商
  104. Tyzack G, Sitnikov S, Barson D, Adams Carr K, Lau N, Kwok J, et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat Commun. 2014;5:4294 pubmed 出版商
  105. Karow M, Schichor C, Beckervordersandforth R, Berninger B. Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons. J Vis Exp. 2014;: pubmed 出版商
  106. Sareen D, Gowing G, Sahabian A, Staggenborg K, Paradis R, Avalos P, et al. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol. 2014;522:2707-28 pubmed 出版商
  107. Kim H, Chang K, Ha T, Kim J, Ha S, Shin K, et al. S100A9 knockout decreases the memory impairment and neuropathology in crossbreed mice of Tg2576 and S100A9 knockout mice model. PLoS ONE. 2014;9:e88924 pubmed 出版商
  108. Nobs L, Baranek C, Nestel S, Kulik A, Kapfhammer J, Nitsch C, et al. Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex. Glia. 2014;62:829-39 pubmed 出版商
  109. Locher H, de Groot J, van Iperen L, Huisman M, Frijns J, Chuva de Sousa Lopes S. Distribution and development of peripheral glial cells in the human fetal cochlea. PLoS ONE. 2014;9:e88066 pubmed 出版商
  110. Grégoire C, Bonenfant D, Le Nguyen A, Aumont A, Fernandes K. Untangling the influences of voluntary running, environmental complexity, social housing and stress on adult hippocampal neurogenesis. PLoS ONE. 2014;9:e86237 pubmed 出版商
  111. Balu D, Takagi S, Puhl M, Benneyworth M, Coyle J. D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol. 2014;34:419-35 pubmed 出版商
  112. Costa R, Bergwerf I, Santermans E, De Vocht N, Praet J, Daans J, et al. Distinct in vitro properties of embryonic and extraembryonic fibroblast-like cells are reflected in their in vivo behavior following grafting in the adult mouse brain. Cell Transplant. 2015;24:223-33 pubmed 出版商
  113. Sun F, Zhou K, Wang S, Liang P, Zhu M, Qiu J. Expression patterns of atrial natriuretic peptide and its receptors within the cochlear spiral ganglion of the postnatal rat. Hear Res. 2014;309:103-12 pubmed 出版商
  114. Wang C, Klechikov A, Gharibyan A, Wärmländer S, Jarvet J, Zhao L, et al. The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade. Acta Neuropathol. 2014;127:507-22 pubmed 出版商
  115. Yamada J, Jinno S. S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus. 2014;24:89-101 pubmed 出版商
  116. Viganò F, Mobius W, Gotz M, Dimou L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci. 2013;16:1370-2 pubmed 出版商
  117. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  118. Nobs L, Nestel S, Kulik A, Nitsch C, Atanasoski S. Cyclin D1 is required for proliferation of Olig2-expressing progenitor cells in the injured cerebral cortex. Glia. 2013;61:1443-55 pubmed 出版商
  119. Brunne B, FRANCO S, Bouché E, Herz J, Howell B, Pahle J, et al. Role of the postnatal radial glial scaffold for the development of the dentate gyrus as revealed by Reelin signaling mutant mice. Glia. 2013;61:1347-63 pubmed 出版商
  120. Liu Q, Spusta S, Mi R, Lassiter R, Stark M, Hoke A, et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med. 2012;1:266-78 pubmed 出版商
  121. Wakabayashi T, Kosaka J, Mori T, Yamada H. Prolonged expression of Puma in cholinergic amacrine cells during the development of rat retina. J Histochem Cytochem. 2012;60:777-88 pubmed
  122. Shimada I, LeComte M, Granger J, Quinlan N, Spees J. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci. 2012;32:7926-40 pubmed 出版商
  123. Desilva T, Borenstein N, Volpe J, Kinney H, Rosenberg P. Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. J Comp Neurol. 2012;520:3912-32 pubmed 出版商
  124. Gavin D, Sharma R, Chase K, Matrisciano F, Dong E, Guidotti A. Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis. Neuropsychopharmacology. 2012;37:531-42 pubmed 出版商
  125. Jinno S. Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus. J Comp Neurol. 2011;519:451-66 pubmed 出版商
  126. Bøttger P, Tracz Z, Heuck A, Nissen P, Romero Ramos M, Lykke Hartmann K. Distribution of Na/K-ATPase alpha 3 isoform, a sodium-potassium P-type pump associated with rapid-onset of dystonia parkinsonism (RDP) in the adult mouse brain. J Comp Neurol. 2011;519:376-404 pubmed 出版商
  127. Schwartz C, Cheng A, Mughal M, Mattson M, Yao P. Clathrin assembly proteins AP180 and CALM in the embryonic rat brain. J Comp Neurol. 2010;518:3803-18 pubmed 出版商
  128. Komitova M, Zhu X, Serwanski D, Nishiyama A. NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol. 2009;512:702-16 pubmed 出版商
  129. Davies D. Temporal and spatial regulation of alpha6 integrin expression during the development of the cochlear-vestibular ganglion. J Comp Neurol. 2007;502:673-82 pubmed
  130. Cao Y, Zhang M, Wang J, Zhang W, Li G, Zhao J. Recurrent intracranial hemangiopericytoma with multiple metastases. Chin Med J (Engl). 2006;119:169-73 pubmed
  131. Kiyokage E, Toida K, Suzuki Yamamoto T, Ishimura K. Localization of 5alpha-reductase in the rat main olfactory bulb. J Comp Neurol. 2005;493:381-95 pubmed