这是一篇来自已证抗体库的有关人类 MYH2的综述,是根据226篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MYH2 抗体。
MYH2 同义词: IBM3; MYH2A; MYHSA2; MYHas8; MYPOP; MyHC-2A; MyHC-IIa

圣克鲁斯生物技术
小鼠 单克隆(N2.261)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s8a
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-53096)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s8a). Nat Commun (2021) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 图 9
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-376157)被用于被用于免疫印迹在小鼠样本上 (图 9). Physiol Rep (2021) ncbi
小鼠 单克隆(F59)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 1:300; 图 2c
圣克鲁斯生物技术 MYH2抗体(Santa Cruz Biotechnology, Sc-32732)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:300 (图 2c). elife (2020) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-376157)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(F59)
  • 免疫组化; giant danio ; 2 ug/ml; 图 4i
圣克鲁斯生物技术 MYH2抗体(Santa, sc?\32732)被用于被用于免疫组化在giant danio 样本上浓度为2 ug/ml (图 4i). Dev Dyn (2019) ncbi
小鼠 单克隆(B-5)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 MYH2抗体(Santa Cruz Biotechnology, sc-376157)被用于被用于免疫细胞化学在人类样本上浓度为1:100. elife (2019) ncbi
小鼠 单克隆(N2.261)
  • 免疫组化-石蜡切片; 人类; 图 3a
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-53096)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Circ Cardiovasc Genet (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫细胞化学; 小鼠; 1:2000; 图 2c
  • 免疫印迹; 小鼠; 1:2000; 图 2b
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-376157)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2b). Gene (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
圣克鲁斯生物技术 MYH2抗体(SantaCruz, sc-376157)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Sci Rep (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫细胞化学; 小鼠; 1:100; 图 5b ii
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-376157)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5b ii). Biomater Res (2017) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 图 1c
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-376157)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(6D595)
  • 免疫组化-石蜡切片; 大鼠; 图 2
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-71632)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2). Springerplus (2016) ncbi
小鼠 单克隆(A4.1025)
  • 免疫细胞化学; 人类; 1:250; 图 1c
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-53088)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1c). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(F59)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-32732)被用于被用于免疫印迹在小鼠样本上 (图 5). elife (2016) ncbi
小鼠 单克隆(A4.74)
  • 免疫细胞化学; 小鼠; 1:50; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 1b
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-53095)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Cell Signal (2016) ncbi
小鼠 单克隆(A4.1025)
  • 免疫印迹; pigs
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, SC-53088)被用于被用于免疫印迹在pigs 样本上. Eur J Nutr (2016) ncbi
小鼠 单克隆(F59)
  • 免疫印迹; 人类
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, SC-32732)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(A4.1519)
圣克鲁斯生物技术 MYH2抗体(Santa Cruz, sc-53094)被用于. PLoS Pathog (2013) ncbi
赛默飞世尔
小鼠 单克隆(MYSN02 (MY-32))
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6c
  • 免疫细胞化学; 小鼠; 1:100; 图 4b
赛默飞世尔 MYH2抗体(ThermoFisher, MA5-11748)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(MY32)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 MYH2抗体(Thermo Fisher, My32)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Neuroscience (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR5280)
  • 免疫组化-冰冻切片; Daurian ground squirrel; 1:400; 图 5
艾博抗(上海)贸易有限公司 MYH2抗体(Abcam, ab124937)被用于被用于免疫组化-冰冻切片在Daurian ground squirrel样本上浓度为1:400 (图 5). J Appl Physiol (1985) (2019) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 4f
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫细胞化学在小鼠样本上 (图 4f). elife (2022) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 人类; 1:500; 图 1k
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1k). Mol Ther Methods Clin Dev (2022) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; axolotl; 1:100; 图 s3c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在axolotl样本上浓度为1:100 (图 s3c). Development (2022) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 人类; 图 4e
  • 免疫组化-石蜡切片; 斑马鱼; 图 s5b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫细胞化学在人类样本上 (图 4e) 和 被用于免疫组化-石蜡切片在斑马鱼样本上 (图 s5b). Cell Rep (2022) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3g
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3g). J Cachexia Sarcopenia Muscle (2022) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 0.5 ug/ml; 图 2a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为0.5 ug/ml (图 2a). J Clin Invest (2022) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:10; 图 1a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 1a). Dev Cell (2021) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 图 2f
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在小鼠样本上 (图 2f). Nat Commun (2021) ncbi
小鼠 单克隆(MF 20)
  • 免疫印迹; 人类; 图 1b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS Genet (2021) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). Cell Metab (2021) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:500; 图 5g
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5g). J Cell Mol Med (2021) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 2a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 2a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5a). BMC Biol (2021) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:300; 图 1d
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF 20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 1d). Nat Commun (2021) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:50; 图 2d
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2d). Skelet Muscle (2021) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 1:50; 图 2e
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF 20)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2e). J Exp Med (2021) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 1:20; 图 2d
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 2d). Nat Commun (2021) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2b). Aging Cell (2021) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠; 5 ug/ml; 图 3b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化在小鼠样本上浓度为5 ug/ml (图 3b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化在小鼠样本上. Cell Rep (2021) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). Nat Commun (2021) ncbi
小鼠 单克隆(A4.74)
  • 免疫印迹; 人类; 1:200
Developmental Studies Hybridoma Bank MYH2抗体(DHSB, A4.74)被用于被用于免疫印迹在人类样本上浓度为1:200. Am J Hum Genet (2021) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). J Biol Chem (2021) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e). Nutrients (2021) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 人类; 1:50; 图 1a
  • 免疫印迹; 人类; 1:200; 图 2c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 2c). elife (2021) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 人类; 图 7b
  • 免疫细胞化学; 小鼠; 图 7a, 7c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫细胞化学在人类样本上 (图 7b) 和 被用于免疫细胞化学在小鼠样本上 (图 7a, 7c). J Clin Invest (2021) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3b). J Clin Invest (2021) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:10; 图 3c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, AB_2147781)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 3c). Cell Death Dis (2020) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 斑马鱼; 1:300; 图 4i
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在斑马鱼样本上浓度为1:300 (图 4i). elife (2020) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 s2a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2a). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(SC-71)
  • 免疫印迹; 小鼠; 图 6c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫印迹在小鼠样本上 (图 6c). elife (2020) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 1:500; 图 s4-2a, 2b
Developmental Studies Hybridoma Bank MYH2抗体(DHSB, MF 20)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s4-2a, 2b). elife (2020) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). elife (2020) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 2 ug/ml; 图 s6a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为2 ug/ml (图 s6a). Hum Mol Genet (2020) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 人类; 1:10; 图 4b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:10 (图 4b). Front Physiol (2020) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠; 1:5
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化在小鼠样本上浓度为1:5. Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). elife (2020) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 图 2c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF 20)被用于被用于免疫组化在小鼠样本上 (图 2c). Cell Rep (2020) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠; 图 4b
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化在小鼠样本上 (图 4b). Physiol Rep (2020) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3f
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3f). elife (2019) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 7s1c
  • 免疫细胞化学; 人类; 1:100; 图 1d
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 7s1c) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1d). elife (2019) ncbi
小鼠 单克隆(SC-71)
  • 免疫印迹; 人类; 1:200; 图 2c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2c). elife (2019) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s2a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s2a). Cell Rep (2019) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-冰冻切片; jerboas; 1:20; 图 2s1
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化-冰冻切片在jerboas样本上浓度为1:20 (图 2s1). elife (2019) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:50; 图 6s2a
  • 免疫印迹; 小鼠; 1:200; 图 6s2e
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF 20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 6s2a) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 6s2e). elife (2019) ncbi
小鼠 单克隆(MF 20)
  • 免疫印迹; 小鼠; 图 2d
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫印迹在小鼠样本上 (图 2d). Sci Rep (2019) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2f
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2f). Cell Res (2019) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-石蜡切片; 大鼠; 1:10; 图 9
  • 免疫印迹; 大鼠; 1:100; 图 11, 12c
  • 免疫组化-石蜡切片; 犬; 1:10; 图 14
  • 免疫印迹; 人类; 1:400; 图 2c
Developmental Studies Hybridoma Bank MYH2抗体(DHSB, MF-20)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:10 (图 9), 被用于免疫印迹在大鼠样本上浓度为1:100 (图 11, 12c), 被用于免疫组化-石蜡切片在犬样本上浓度为1:10 (图 14) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 2c). Heliyon (2019) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, P3U-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). Dev Biol (2019) ncbi
小鼠 单克隆(MF 20)
  • 流式细胞仪; 人类; 1:20; 图 s3f, s3h
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s3f, s3h). Cell Rep (2019) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-冰冻切片; 人类; 1:20; 图 s2b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, P13538)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:20 (图 s2b). Dev Cell (2019) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 大鼠; 1:600; 图 4b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:600 (图 4b). Sci Adv (2019) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:40; 图 2g
Developmental Studies Hybridoma Bank MYH2抗体(DHSB, MF20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:40 (图 2g). Cell Stem Cell (2018) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71-c)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). FASEB J (2019) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:40; 图 4a
Developmental Studies Hybridoma Bank MYH2抗体(DHSB, MF20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:40 (图 4a). Nature (2018) ncbi
小鼠 单克隆(MF 20)
  • 流式细胞仪; 小鼠; 1:10; 图 1a
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF 20)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 1a). Sci Rep (2018) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:50; 图 6e
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 6e). Dev Cell (2017) ncbi
小鼠 单克隆(F59)
  • 免疫组化; 斑马鱼; 图 1c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, F59)被用于被用于免疫组化在斑马鱼样本上 (图 1c). Dev Cell (2017) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 4e
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 4e). Dev Cell (2017) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 图 3c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 3c). Cell Metab (2017) ncbi
小鼠 单克隆(BF-35)
  • 免疫组化; 小鼠; 1:100; 图 4a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, BF-35)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4a). Physiol Rep (2017) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠; 1:1000; 图 4a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a). Physiol Rep (2017) ncbi
小鼠 单克隆(A4.74)
  • 免疫印迹; 人类; 1:200; 图 3c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, A4.74)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3c). Physiol Rep (2017) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1g
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, sc-71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1g). Nat Commun (2017) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 6h
  • 免疫印迹; 小鼠; 1:1000; 图 6d
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 6h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). elife (2017) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). PLoS ONE (2017) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:100; 图 7e
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7e). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 1f
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1f). PLoS ONE (2017) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3). EBioMedicine (2017) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠; 图 5a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC71)被用于被用于免疫组化在小鼠样本上 (图 5a). Nat Commun (2017) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 斑马鱼; 1:10; 图 3c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在斑马鱼样本上浓度为1:10 (图 3c). Sci Rep (2017) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 5e
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 5e). Stem Cells Int (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫印迹; 小鼠; 1:100; 图 1c
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 1c). Nat Commun (2017) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 人类; 图 2g
Developmental Studies Hybridoma Bank MYH2抗体(DHSB, MF20)被用于被用于免疫细胞化学在人类样本上 (图 2g). Sci Rep (2017) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:100; 图 6e
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6e). J Neurosci (2017) ncbi
小鼠 单克隆(MF 20)
  • 流式细胞仪; 人类; 1:20; 图 1d
Developmental Studies Hybridoma Bank MYH2抗体(Hybridoma Bank, MF20)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 1d). Nat Commun (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 人类; 1:30; 图 3b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在人类样本上浓度为1:30 (图 3b). Sci Rep (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 人类; 1:200
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化在人类样本上浓度为1:200. J Cachexia Sarcopenia Muscle (2017) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 人类; 1:300; 图 2a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2a). elife (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 2d
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF-20)被用于被用于免疫细胞化学在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 2d). J Biol Chem (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:400; 图 4d
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4d). J Cell Sci (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 1:20; 图 9
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 9). elife (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠; 1:2
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化在小鼠样本上浓度为1:2. elife (2016) ncbi
小鼠 单克隆(BF-35)
  • 免疫组化; 小鼠; 1:2
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, BF-35)被用于被用于免疫组化在小鼠样本上浓度为1:2. elife (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 人类; 1:500; 图 9a
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化在人类样本上浓度为1:500 (图 9a). J Physiol (2017) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 人类; 图 1a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC.71)被用于被用于免疫组化在人类样本上 (图 1a). J Transl Med (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫印迹; 小鼠; 图 3
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(A4.74)
  • 免疫印迹; 人类; 1:200; 图 7
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, A4.74)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7). J Appl Physiol (1985) (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, Sc71)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4a). J Physiol (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 1:50; 图 3g
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3g). J Clin Invest (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 1). Skelet Muscle (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). J Biol Chem (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 表 1
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Hybridoma Bank, MF 20)被用于被用于免疫细胞化学在小鼠样本上 (表 1). J Vis Exp (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:5
Developmental Studies Hybridoma Bank MYH2抗体(Hybridoma Bank, MF20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5. Cell Death Dis (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:20; 图 s3e
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:20 (图 s3e). Nat Med (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 大鼠; 1:100; 图 1d
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 1d). Anat Rec (Hoboken) (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 1:500; 图 s2
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 2). Cell Signal (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 5
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). PLoS Genet (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 1:100; 图 5
  • 免疫印迹; 小鼠; 图 5
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化在小鼠样本上 (图 2). Brain Behav (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 人类; 1:20
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫细胞化学在人类样本上浓度为1:20. BMC Biol (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-冰冻切片; Japanese common newt; 1:200; 图 4f
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20-c)被用于被用于免疫组化-冰冻切片在Japanese common newt样本上浓度为1:200 (图 4f). Nat Commun (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 大鼠
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC71)被用于被用于免疫组化-冰冻切片在大鼠样本上. Aging (Albany NY) (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫印迹; 小鼠; 图 4b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫印迹在小鼠样本上 (图 4b). Hum Mol Genet (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:10,000; 图 5
  • 免疫印迹; 小鼠; 1:100; 图 3
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10,000 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫印迹; 小鼠; 图 5
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫印迹在小鼠样本上 (图 5). Dis Model Mech (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 1:50; 表 4
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫组化在小鼠样本上浓度为1:50 (表 4). Differentiation (2016) ncbi
小鼠 单克隆(BF-35)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, BF-35)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 人类; 1:200; 表 2
Developmental Studies Hybridoma Bank MYH2抗体(Hybridoma Bank, SC-71)被用于被用于免疫组化在人类样本上浓度为1:200 (表 2). Med Sci Sports Exerc (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 图 4a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
小鼠 单克隆(A4.74)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, A474)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(BF-35)
  • 免疫组化-冰冻切片; 牛; 1:10
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, BF-35)被用于被用于免疫组化-冰冻切片在牛样本上浓度为1:10. J Anim Sci (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 人类; 图 7a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC.71)被用于被用于免疫组化-冰冻切片在人类样本上 (图 7a). J Appl Physiol (1985) (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 国内马; 1:8; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在国内马样本上浓度为1:8 (图 1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠; 图 4
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71 (type 2a))被用于被用于免疫组化在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(BF-35)
  • 免疫组化; 小鼠; 图 4
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, BF-35)被用于被用于免疫组化在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(A4.74)
  • 免疫印迹; 人类; 1:200; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, A4.74)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Exp Gerontol (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 犬; 图 S1f
  • 免疫印迹; 人类; 图 4c
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫细胞化学在犬样本上 (图 S1f) 和 被用于免疫印迹在人类样本上 (图 4c). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 犬; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(杂交瘤细胞, MF20)被用于被用于免疫细胞化学在犬样本上 (图 2). Stem Cells Int (2016) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 1b
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 1b). Am J Physiol Cell Physiol (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:50; 图 2h
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2h). J Cell Sci (2016) ncbi
小鼠 单克隆(F59)
  • 免疫组化; 斑马鱼; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, F59)被用于被用于免疫组化在斑马鱼样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1). Skelet Muscle (2015) ncbi
小鼠 单克隆(A4.74)
  • 免疫印迹; 人类; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, A4.74)被用于被用于免疫印迹在人类样本上 (图 1). Eur J Appl Physiol (2016) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-冰冻切片; 小鼠; 图 3
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). Skelet Muscle (2015) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化在小鼠样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(F59)
  • 免疫组化; 小鼠
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, F59)被用于被用于免疫组化在小鼠样本上. J Cell Biol (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 人类; 图 s5
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在人类样本上 (图 s5). Stem Cells (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 9
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 9). Skelet Muscle (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s8
  • 免疫细胞化学; 小鼠; 1:1000; 图 s1
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s8) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s1). Nat Commun (2015) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠; 图 s5
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化在小鼠样本上 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(A4.74)
  • 免疫印迹; 人类; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, A4.74)被用于被用于免疫印迹在人类样本上 (图 2). J Appl Physiol (1985) (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫印迹; 小鼠; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 3
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Hum Mol Genet (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 1:200; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(杂交瘤细胞, MF-20)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2). Nat Biotechnol (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫印迹; 小鼠; 1:1000; 图 S2
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 S2). Nat Commun (2015) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 人类
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC.71)被用于被用于免疫组化在人类样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 5
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(SC-71)
  • 免疫细胞化学; 小鼠
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫细胞化学在小鼠样本上. Dis Model Mech (2015) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; pigs ; 1:200
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Hybridoma Bank, SC-71)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:200. J Anim Sci (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF-20)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Skelet Muscle (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; 小鼠; 1:100; 图 6
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化; newts; 1:2000; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化在newts样本上浓度为1:2000 (图 1). Methods Mol Biol (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 人类
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:500
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 人类; 1:200; 表 4
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 4). J Vis Exp (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-石蜡切片; 小鼠; 1:50
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Am J Physiol Cell Physiol (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-石蜡切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 人类; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化在人类样本上 (图 1). Appl Physiol Nutr Metab (2015) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 9
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9). Mol Cell Biol (2015) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 图 2
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Mol Cell Biol (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 6
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Mol Cell Biol (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-冰冻切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Dent Res (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 1
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Mol Ther Methods Clin Dev (2014) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠; 1:100
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC.71)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Nat Med (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 1:2
Developmental Studies Hybridoma Bank MYH2抗体(DHSB, MF20)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2. PLoS ONE (2014) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 大鼠; 1:40
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化在大鼠样本上浓度为1:40. Physiol Rep (2014) ncbi
小鼠 单克隆(MF 20)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF-20)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(MF 20)
  • 免疫印迹; 人类; 图 s7
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF 20)被用于被用于免疫印迹在人类样本上 (图 s7). Oncotarget (2014) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-石蜡切片; 小鼠; 1:50
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Dev Biol (2014) ncbi
小鼠 单克隆(F59)
  • 免疫组化; 斑马鱼; 1:10
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, F59)被用于被用于免疫组化在斑马鱼样本上浓度为1:10. Acta Neuropathol (2014) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 人类; 1:500
Developmental Studies Hybridoma Bank MYH2抗体(Hybridoma Bank, SC-71)被用于被用于免疫组化在人类样本上浓度为1:500. J Appl Physiol (1985) (2014) ncbi
小鼠 单克隆(F59)
  • 免疫细胞化学; 小鼠; 图 9
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, F59)被用于被用于免疫细胞化学在小鼠样本上 (图 9). Anat Rec (Hoboken) (2014) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠; 图 6
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF20)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Anat Rec (Hoboken) (2014) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 大鼠; 1:200
  • 免疫组化; 人类; 1:200
  • 免疫组化; 小鼠; 1:200
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化在大鼠样本上浓度为1:200, 被用于免疫组化在人类样本上浓度为1:200 和 被用于免疫组化在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(MF 20)
  • 免疫印迹; 人类; 1:1000
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF 20)被用于被用于免疫印迹在人类样本上浓度为1:1000. Pflugers Arch (2015) ncbi
小鼠 单克隆(A4.74)
  • 免疫组化; 人类
Developmental Studies Hybridoma Bank MYH2抗体(Development Studies Hybridoma Bank, A4.74)被用于被用于免疫组化在人类样本上. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 人类; 1:500
Developmental Studies Hybridoma Bank MYH2抗体(Hybridoma Bank, SC-71)被用于被用于免疫组化在人类样本上浓度为1:500. Scand J Med Sci Sports (2014) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 人类
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC.71)被用于被用于免疫组化在人类样本上. J Physiol (2014) ncbi
小鼠 单克隆(MF 20)
  • 免疫印迹; 人类; 1:1000
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF 20)被用于被用于免疫印迹在人类样本上浓度为1:1000. Front Physiol (2014) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2014) ncbi
小鼠 单克隆(BF-35)
  • 免疫组化; 牛
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, BF-35)被用于被用于免疫组化在牛样本上. J Anim Sci (2014) ncbi
小鼠 单克隆(A4.74)
  • 免疫印迹; 人类; 1:200; 图 1a
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, A4.74)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1a). J Physiol (2014) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF-20)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 人类; 1:200
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. FASEB J (2014) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化; 小鼠; 图 3
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, SC71)被用于被用于免疫组化在小鼠样本上 (图 3). Hum Mol Genet (2014) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF20)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Muscle Nerve (2014) ncbi
小鼠 单克隆(A4.74)
  • 免疫组化; 人类; 1:100
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, A4.74)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(MF 20)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, MF-20)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(MF 20)
  • 免疫组化-石蜡切片; 鸡; 1:200
Developmental Studies Hybridoma Bank MYH2抗体(DSHB, MF 20)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:200. J Comp Neurol (2013) ncbi
小鼠 单克隆(SC-71)
  • 免疫组化-冰冻切片; 小鼠
Developmental Studies Hybridoma Bank MYH2抗体(Developmental Studies Hybridoma Bank, SC-71)被用于被用于免疫组化-冰冻切片在小鼠样本上. FASEB J (2012) ncbi
西格玛奥德里奇
小鼠 单克隆(MY-32)
  • 免疫组化; 小鼠; 10 ug/ml; 图 1h
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫组化在小鼠样本上浓度为10 ug/ml (图 1h). elife (2022) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2a
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2a). Cell Rep (2022) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 1:200; 图 s8h
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s8h). Nat Commun (2021) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化; 人类; 1:200; 图 2c
西格玛奥德里奇 MYH2抗体(Sigma Aldrich, M4276)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2c). elife (2020) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 大鼠; 1:4500; 图 2o
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫印迹在大鼠样本上浓度为1:4500 (图 2o). Ann Clin Transl Neurol (2020) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4c
西格玛奥德里奇 MYH2抗体(Sigma-Aldrich, M4276)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4c). Front Physiol (2020) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 小鼠; 1:5000; 图 s18f
西格玛奥德里奇 MYH2抗体(Sigma Aldrich, MY32)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s18f). Science (2019) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
西格玛奥德里奇 MYH2抗体(Sigma, MY-32)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b). Redox Biol (2019) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 1:200; 图 s3d
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s3d). Sci Adv (2018) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 小鼠; 图 1m
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1m). J Biol Chem (2017) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
西格玛奥德里奇 MYH2抗体(Sigma, MY32)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). PLoS ONE (2017) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
西格玛奥德里奇 MYH2抗体(Sigma-Aldrich, M4276)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Cell Discov (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 人类; 1:1000; 图 3
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). Skelet Muscle (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 MYH2抗体(Sigma, my32)被用于被用于免疫印迹在小鼠样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 图 7
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫细胞化学在小鼠样本上 (图 7). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 3a, b
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 3a, b). Biomed Res Int (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 4
西格玛奥德里奇 MYH2抗体(Sigma-Aldrich, M4276)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 人类; 1:400; 图 1
  • 免疫印迹; 人类; 1:3000; 图 2
  • 免疫细胞化学; 小鼠; 1:400; 图 1
  • 免疫印迹; 小鼠; 1:3000; 图 2
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1), 被用于免疫印迹在人类样本上浓度为1:3000 (图 2), 被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5
西格玛奥德里奇 MYH2抗体(Sigma, M1570)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5). Physiol Rep (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 图 5
西格玛奥德里奇 MYH2抗体(Sigma-Aldrich, MY-32)被用于被用于免疫细胞化学在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫印迹; 鸡; 1:500
西格玛奥德里奇 MYH2抗体(Sigma-Aldrich, M4276)被用于被用于免疫印迹在鸡样本上浓度为1:500. Biosci Biotechnol Biochem (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化; 小鼠; 1:250; 图 3
西格玛奥德里奇 MYH2抗体(Sigma-Aldrich, My32)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3). PLoS Genet (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 人类; 图 5a
西格玛奥德里奇 MYH2抗体(SIGMA, M4276)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). BMC Genomics (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 3
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 3). Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化; 大鼠; 1:100
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫组化在大鼠样本上浓度为1:100. Muscle Nerve (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 1:250; 图 6e
西格玛奥德里奇 MYH2抗体(Sigma-Aldrich, M4276)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 6e). Hum Mol Genet (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 1
西格玛奥德里奇 MYH2抗体(sigma, M4276)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 1). Biomed Res Int (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇 MYH2抗体(Sigma-Aldrich, M4276)被用于被用于免疫组化-石蜡切片在人类样本上. J Surg Res (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫组化-冰冻切片在小鼠样本上. Skelet Muscle (2015) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠; 1:2000; 图 3
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3). J Cell Biol (2014) ncbi
小鼠 单克隆(MY-32)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 1:4000
西格玛奥德里奇 MYH2抗体(Sigma-Aldrich, M4276)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:4000. Cell Physiol Biochem (2014) ncbi
小鼠 单克隆(MY-32)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇 MYH2抗体(Sigma, M4276)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Cell Physiol (2012) ncbi
文章列表
  1. Sefton E, Gallardo M, Tobin C, Collins B, Colasanto M, Merrell A, et al. Fibroblast-derived Hgf controls recruitment and expansion of muscle during morphogenesis of the mammalian diaphragm. elife. 2022;11: pubmed 出版商
  2. Wheeler J, Whitney O, Vogler T, Nguyen E, Pawlikowski B, Lester E, et al. RNA-binding proteins direct myogenic cell fate decisions. elife. 2022;11: pubmed 出版商
  3. Meng J, Moore M, Counsell J, Muntoni F, Popplewell L, Morgan J. Optimized lentiviral vector to restore full-length dystrophin via a cell-mediated approach in a mouse model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev. 2022;25:491-507 pubmed 出版商
  4. Schr xf6 tter S, Yuskaitis C, MacArthur M, Mitchell S, Hosios A, Osipovich M, et al. The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth. Cell Rep. 2022;39:110824 pubmed 出版商
  5. Walker S, Sabin K, Gearhart M, Yamamoto K, Echeverri K. Regulation of stem cell identity by miR-200a during spinal cord regeneration. Development. 2022;149: pubmed 出版商
  6. Hsu J, Danis E, Nance S, O Brien J, Gustafson A, Wessells V, et al. SIX1 reprograms myogenic transcription factors to maintain the rhabdomyosarcoma undifferentiated state. Cell Rep. 2022;38:110323 pubmed 出版商
  7. Luan Y, Zhang Y, Yu S, You M, Xu P, Chung S, et al. Development of ovarian tumour causes significant loss of muscle and adipose tissue: a novel mouse model for cancer cachexia study. J Cachexia Sarcopenia Muscle. 2022;13:1289-1301 pubmed 出版商
  8. Bartoli F, Debant M, Chuntharpursat Bon E, Evans E, Musialowski K, Parsonage G, et al. Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. J Clin Invest. 2022;132: pubmed 出版商
  9. Eigler T, Zarfati G, Amzallag E, Sinha S, Segev N, Zabary Y, et al. ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion. Dev Cell. 2021;56:3349-3363.e6 pubmed 出版商
  10. Langdon C, Gadek K, Garcia M, Evans M, Reed K, Bush M, et al. Synthetic essentiality between PTEN and core dependency factor PAX7 dictates rhabdomyosarcoma identity. Nat Commun. 2021;12:5520 pubmed 出版商
  11. Zhang H, Shang R, Bi P. Feedback regulation of Notch signaling and myogenesis connected by MyoD-Dll1 axis. PLoS Genet. 2021;17:e1009729 pubmed 出版商
  12. Fan Z, Turiel G, Ardicoglu R, Ghobrial M, Masschelein E, Kocijan T, et al. Exercise-induced angiogenesis is dependent on metabolically primed ATF3/4+ endothelial cells. Cell Metab. 2021;: pubmed 出版商
  13. Song R, Zhao S, Xu Y, Hu J, Ke S, Li F, et al. MRTF-A regulates myoblast commitment to differentiation by targeting PAX7 during muscle regeneration. J Cell Mol Med. 2021;25:8645-8661 pubmed 出版商
  14. Joanne P, Hovhannisyan Y, Bencze M, Daher M, Parlakian A, Toutirais G, et al. Absence of Desmin Results in Impaired Adaptive Response to Mechanical Overloading of Skeletal Muscle. Front Cell Dev Biol. 2021;9:662133 pubmed 出版商
  15. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  16. Esteves de Lima J, Bou Akar R, Machado L, Li Y, Drayton Libotte B, Dilworth F, et al. HIRA stabilizes skeletal muscle lineage identity. Nat Commun. 2021;12:3450 pubmed 出版商
  17. Kurosaka M, Ogura Y, Sato S, Kohda K, Funabashi T. Transcription factor signal transducer and activator of transcription 6 (STAT6) is an inhibitory factor for adult myogenesis. Skelet Muscle. 2021;11:14 pubmed 出版商
  18. Rupert J, Narasimhan A, Jengelley D, Jiang Y, Liu J, Au E, et al. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J Exp Med. 2021;218: pubmed 出版商
  19. Park Y, Lee J, Yan Z, McKernan K, O Haren T, Wang W, et al. Interplay of BAF and MLL4 promotes cell type-specific enhancer activation. Nat Commun. 2021;12:1630 pubmed 出版商
  20. Wallace M, Aguirre N, Marcotte G, Marshall A, Baehr L, Hughes D, et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322 pubmed 出版商
  21. Nichenko A, Sorensen J, Southern W, Qualls A, Schifino A, McFaline Figueroa J, et al. Lifelong Ulk1-Mediated Autophagy Deficiency in Muscle Induces Mitochondrial Dysfunction and Contractile Weakness. Int J Mol Sci. 2021;22: pubmed 出版商
  22. Steinert N, Potts G, Wilson G, Klamen A, Lin K, Hermanson J, et al. Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of skeletal muscle size and function. Cell Rep. 2021;34:108796 pubmed 出版商
  23. Seo J, Kang J, Kim Y, Jo Y, Kim J, Hann S, et al. Maintenance of type 2 glycolytic myofibers with age by Mib1-Actn3 axis. Nat Commun. 2021;12:1294 pubmed 出版商
  24. Wyckelsma V, Venckunas T, Houweling P, Schlittler M, Lauschke V, Tiong C, et al. Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. Am J Hum Genet. 2021;108:446-457 pubmed 出版商
  25. Chen T, Kuo T, Dandan M, Lee R, Chang M, Villivalam S, et al. The role of striated muscle Pik3r1 in glucose and protein metabolism following chronic glucocorticoid exposure. J Biol Chem. 2021;296:100395 pubmed 出版商
  26. Akashi S, Morita A, Mochizuki Y, Shibuya F, Kamei Y, Miura S. Citrus hassaku Extract Powder Increases Mitochondrial Content and Oxidative Muscle Fibers by Upregulation of PGC-1α in Skeletal Muscle. Nutrients. 2021;13: pubmed 出版商
  27. Ramirez Martinez A, Zhang Y, Chen K, Kim J, Cenik B, McAnally J, et al. The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. Nat Commun. 2021;12:690 pubmed 出版商
  28. Ortiz Cordero C, Magli A, Dhoke N, Kuebler T, Selvaraj S, Oliveira N, et al. NAD+ enhances ribitol and ribose rescue of α-dystroglycan functional glycosylation in human FKRP-mutant myotubes. elife. 2021;10: pubmed 出版商
  29. Azar C, Valentine M, Trausch Azar J, Rois L, Mahjoub M, Nelson D, et al. RNA-Seq identifies genes whose proteins are upregulated during syncytia development in murine C2C12 myoblasts and human BeWo trophoblasts. Physiol Rep. 2021;9:e14671 pubmed 出版商
  30. Pal A, Leung J, Ang G, Rao V, Pignata L, Lim H, et al. EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma. elife. 2020;9: pubmed 出版商
  31. Uezumi A, Ikemoto Uezumi M, Zhou H, Kurosawa T, Yoshimoto Y, Nakatani M, et al. Mesenchymal Bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia. J Clin Invest. 2021;131: pubmed 出版商
  32. Chung L, Liu S, Huang S, Salter D, Lee H, Hsu Y. High phosphate induces skeletal muscle atrophy and suppresses myogenic differentiation by increasing oxidative stress and activating Nrf2 signaling. Aging (Albany NY). 2020;12:21446-21468 pubmed 出版商
  33. Shen X, Xu F, Li M, Wu S, Zhang J, Wang A, et al. miR-322/-503 rescues myoblast defects in myotonic dystrophy type 1 cell model by targeting CUG repeats. Cell Death Dis. 2020;11:891 pubmed 出版商
  34. Ganassi M, Badodi S, Wanders K, Zammit P, Hughes S. Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. elife. 2020;9: pubmed 出版商
  35. Schuld J, Orfanos Z, Chevessier F, Eggers B, Heil L, Uszkoreit J, et al. Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathol Commun. 2020;8:154 pubmed 出版商
  36. Nowinski S, Solmonson A, Rusin S, Maschek J, Bensard C, Fogarty S, et al. Mitochondrial fatty acid synthesis coordinates oxidative metabolism in mammalian mitochondria. elife. 2020;9: pubmed 出版商
  37. Stefanovic S, Laforest B, Desvignes J, Lescroart F, Argiro L, Maurel Zaffran C, et al. Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation. elife. 2020;9: pubmed 出版商
  38. Arnold L, Cecchini A, Stark D, Ihnat J, Craigg R, Carter A, et al. EphA7 promotes myogenic differentiation via cell-cell contact. elife. 2020;9: pubmed 出版商
  39. Perrin A, Metay C, Villanova M, Carlier R, Pegoraro E, Juntas Morales R, et al. A new congenital multicore titinopathy associated with fast myosin heavy chain deficiency. Ann Clin Transl Neurol. 2020;7:846-854 pubmed 出版商
  40. Pereira J, Gerber J, Ghidinelli M, Gerber D, Tortola L, Ommer A, et al. Mice carrying an analogous heterozygous dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy. Hum Mol Genet. 2020;29:1253-1273 pubmed 出版商
  41. Arc Chagnaud C, Py G, Fovet T, Roumanille R, Demangel R, Pagano A, et al. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front Physiol. 2020;11:71 pubmed 出版商
  42. Laitila J, McNamara E, Wingate C, Goullee H, Ross J, Taylor R, et al. Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb. Acta Neuropathol Commun. 2020;8:18 pubmed 出版商
  43. Choi I, Lim H, Cho H, Oh Y, Chou B, Bai H, et al. Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. elife. 2020;9: pubmed 出版商
  44. Li Q, Mao F, Zhou B, Huang Y, Zou Z, Dendekker A, et al. p53 Integrates Temporal WDR5 Inputs during Neuroectoderm and Mesoderm Differentiation of Mouse Embryonic Stem Cells. Cell Rep. 2020;30:465-480.e6 pubmed 出版商
  45. Vang P, Vasdev A, Zhan W, Gransee H, Sieck G, Mantilla C. Diaphragm muscle sarcopenia into very old age in mice. Physiol Rep. 2020;8:e14305 pubmed 出版商
  46. Owen A, Patel S, Smith J, Balasuriya B, Mori S, Hawk G, et al. Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model. elife. 2019;8: pubmed 出版商
  47. Selvaraj S, Mondragón González R, Xu B, Magli A, Kim H, Laine J, et al. Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. elife. 2019;8: pubmed 出版商
  48. Arai H, Sato F, Yamamoto T, Woltjen K, Kiyonari H, Yoshimoto Y, et al. Metalloprotease-Dependent Attenuation of BMP Signaling Restricts Cardiac Neural Crest Cell Fate. Cell Rep. 2019;29:603-616.e5 pubmed 出版商
  49. Tran M, Tsutsumi R, Erberich J, Chen K, Flores M, Cooper K. Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death. elife. 2019;8: pubmed 出版商
  50. Jia Z, Nie Y, Yue F, Kong Y, Gu L, Gavin T, et al. A requirement of Polo-like kinase 1 in murine embryonic myogenesis and adult muscle regeneration. elife. 2019;8: pubmed 出版商
  51. Kim K, Rana A, Park C. Orai1 inhibitor STIM2β regulates myogenesis by controlling SOCE dependent transcriptional factors. Sci Rep. 2019;9:10794 pubmed 出版商
  52. Nelson H, Coffing G, Chilson S, Hester K, Carrillo C, Ostreicher S, et al. Structure, development, and functional morphology of the cement gland of the giant danio, Devario malabaricus. Dev Dyn. 2019;248:1155-1174 pubmed 出版商
  53. Ma X, Chang H, Wang Z, Xu S, Peng X, Zhang J, et al. Differential activation of the calpain system involved in individualized adaptation of different fast-twitch muscles in hibernating Daurian ground squirrels. J Appl Physiol (1985). 2019;127:328-341 pubmed 出版商
  54. Herdy J, Schäfer S, Kim Y, Ansari Z, Zangwill D, Ku M, et al. Chemical modulation of transcriptionally enriched signaling pathways to optimize the conversion of fibroblasts into neurons. elife. 2019;8: pubmed 出版商
  55. Gao R, Liang X, Cheedipudi S, Cordero J, Jiang X, Zhang Q, et al. Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate. Cell Res. 2019;29:486-501 pubmed 出版商
  56. Powell P, Wei C, Fu L, Pat B, Bradley W, Collawn J, et al. Chymase uptake by cardiomyocytes results in myosin degradation in cardiac volume overload. Heliyon. 2019;5:e01397 pubmed 出版商
  57. Rajderkar S, Mann J, Panaretos C, Yumoto K, Li H, Mishina Y, et al. Trim33 is required for appropriate development of pre-cardiogenic mesoderm. Dev Biol. 2019;450:101-114 pubmed 出版商
  58. Yap L, Wang J, Moreno Moral A, Chong L, Sun Y, Harmston N, et al. In Vivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors. Cell Rep. 2019;26:3231-3245.e9 pubmed 出版商
  59. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed 出版商
  60. Sahara M, Santoro F, Sohlmér J, Zhou C, Witman N, Leung C, et al. Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell. 2019;48:475-490.e7 pubmed 出版商
  61. Bergmeister K, Aman M, Muceli S, Vujaklija I, Manzano Szalai K, Unger E, et al. Peripheral nerve transfers change target muscle structure and function. Sci Adv. 2019;5:eaau2956 pubmed 出版商
  62. Baghdadi M, Firmino J, Soni K, Evano B, Di Girolamo D, Mourikis P, et al. Notch-Induced miR-708 Antagonizes Satellite Cell Migration and Maintains Quiescence. Cell Stem Cell. 2018;23:859-868.e5 pubmed 出版商
  63. Chang H, Kao C, Chung S, Chen W, Aninda L, Chen Y, et al. Bhlhe40 differentially regulates the function and number of peroxisomes and mitochondria in myogenic cells. Redox Biol. 2019;20:321-333 pubmed 出版商
  64. Gallot Y, Bohnert K, Straughn A, Xiong G, Hindi S, Kumar A. PERK regulates skeletal muscle mass and contractile function in adult mice. FASEB J. 2019;33:1946-1962 pubmed 出版商
  65. Han W, Anderson S, Mohiuddin M, Barros D, Nakhai S, Shin E, et al. Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma. Sci Adv. 2018;4:eaar4008 pubmed 出版商
  66. Baghdadi M, Castel D, Machado L, Fukada S, Birk D, Relaix F, et al. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature. 2018;557:714-718 pubmed 出版商
  67. Marroncelli N, Bianchi M, Bertin M, Consalvi S, Saccone V, De Bardi M, et al. HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep. 2018;8:3448 pubmed 出版商
  68. Tucker N, McLellan M, Hu D, Ye J, Parsons V, Mills R, et al. Novel Mutation in FLNC (Filamin C) Causes Familial Restrictive Cardiomyopathy. Circ Cardiovasc Genet. 2017;10: pubmed 出版商
  69. Chen X, Wang R, Liu X, Wu Y, Zhou T, Yang Y, et al. A Chemical-Genetic Approach Reveals the Distinct Roles of GSK3? and GSK3? in Regulating Embryonic Stem Cell Fate. Dev Cell. 2017;43:563-576.e4 pubmed 出版商
  70. Wang X, Zeng R, Xu H, Xu Z, Zuo B. The nuclear protein-coding gene ANKRD23 negatively regulates myoblast differentiation. Gene. 2017;629:68-75 pubmed 出版商
  71. Guo Y, Wang J, Zhu M, Zeng R, Xu Z, Li G, et al. Identification of MyoD-Responsive Transcripts Reveals a Novel Long Non-coding RNA (lncRNA-AK143003) that Negatively Regulates Myoblast Differentiation. Sci Rep. 2017;7:2828 pubmed 出版商
  72. Raices M, Bukata L, Sakuma S, Borlido J, Hernandez L, Hart D, et al. Nuclear Pores Regulate Muscle Development and Maintenance by Assembling a Localized Mef2C Complex. Dev Cell. 2017;41:540-554.e7 pubmed 出版商
  73. Quinn M, Goh Q, Kurosaka M, Gamage D, Petrany M, Prasad V, et al. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat Commun. 2017;8:15665 pubmed 出版商
  74. Koh J, Hancock C, Terada S, Higashida K, Holloszy J, Han D. PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise. Cell Metab. 2017;25:1176-1185.e5 pubmed 出版商
  75. Zhu X, Yuan X, Wang M, Fang Y, Liu Y, Zhang X, et al. A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J Biol Chem. 2017;292:9409-9419 pubmed 出版商
  76. Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K, et al. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep. 2017;5: pubmed 出版商
  77. Wyckelsma V, Levinger I, Murphy R, Petersen A, Perry B, Hedges C, et al. Intense interval training in healthy older adults increases skeletal muscle [3H]ouabain-binding site content and elevates Na+,K+-ATPase ?2 isoform abundance in Type II fibers. Physiol Rep. 2017;5: pubmed 出版商
  78. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  79. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  80. Fajardo V, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers P, et al. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS ONE. 2017;12:e0173708 pubmed 出版商
  81. Morrow R, Picard M, Derbeneva O, Leipzig J, McManus M, Gouspillou G, et al. Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity. Proc Natl Acad Sci U S A. 2017;114:2705-2710 pubmed 出版商
  82. Gautam J, Nirwane A, Yao Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther. 2017;8:28 pubmed 出版商
  83. Cortez Toledo O, Schnair C, Sangngern P, Metzger D, Chao L. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE. 2017;12:e0171268 pubmed 出版商
  84. Shen C, Zhou J, Wang X, Yu X, Liang C, Liu B, et al. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3? Signaling Pathway. EBioMedicine. 2017;16:238-250 pubmed 出版商
  85. Hogarth M, Houweling P, Thomas K, Gordish Dressman H, Bello L, Pegoraro E, et al. Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nat Commun. 2017;8:14143 pubmed 出版商
  86. Witzel H, Cheedipudi S, Gao R, Stainier D, Dobreva G. Isl2b regulates anterior second heart field development in zebrafish. Sci Rep. 2017;7:41043 pubmed 出版商
  87. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  88. Cha S, Lee H, Koh W. Study of myoblast differentiation using multi-dimensional scaffolds consisting of nano and micropatterns. Biomater Res. 2017;21:1 pubmed 出版商
  89. Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff T, et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328 pubmed 出版商
  90. Christoforou N, Chakraborty S, Kirkton R, Adler A, Addis R, Leong K. Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage. Sci Rep. 2017;7:40285 pubmed 出版商
  91. Taetzsch T, Tenga M, Valdez G. Muscle Fibers Secrete FGFBP1 to Slow Degeneration of Neuromuscular Synapses during Aging and Progression of ALS. J Neurosci. 2017;37:70-82 pubmed 出版商
  92. Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K, et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun. 2016;7:13602 pubmed 出版商
  93. Kim J, Ko I, Atala A, Yoo J. Progressive Muscle Cell Delivery as a Solution for Volumetric Muscle Defect Repair. Sci Rep. 2016;6:38754 pubmed 出版商
  94. St Jean Pelletier F, Pion C, Leduc Gaudet J, Sgarioto N, Zovilé I, Barbat Artigas S, et al. The impact of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men. J Cachexia Sarcopenia Muscle. 2017;8:213-228 pubmed 出版商
  95. Moyle L, Blanc E, Jaka O, Prueller J, Banerji C, Tedesco F, et al. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy. elife. 2016;5: pubmed 出版商
  96. Beyer S, Pontis J, Schirwis E, Battisti V, Rudolf A, Le Grand F, et al. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discov. 2016;2:16037 pubmed
  97. Huang S, Zhou A, Nguyen D, Zhang H, Benz E. Protein 4.1R Influences Myogenin Protein Stability and Skeletal Muscle Differentiation. J Biol Chem. 2016;291:25591-25607 pubmed
  98. Knopp P, Krom Y, Banerji C, Panamarova M, Moyle L, den Hamer B, et al. DUX4 induces a transcriptome more characteristic of a less-differentiated cell state and inhibits myogenesis. J Cell Sci. 2016;129:3816-3831 pubmed
  99. Southard S, Kim J, Low S, Tsika R, Lepper C. Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency. elife. 2016;5: pubmed 出版商
  100. Peake J, Roberts L, Figueiredo V, Egner I, Krog S, Aas S, et al. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J Physiol. 2017;595:695-711 pubmed 出版商
  101. White S, McDermott M, Sufit R, Kosmac K, Bugg A, Gonzalez Freire M, et al. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study. J Transl Med. 2016;14:284 pubmed 出版商
  102. Kotoku T, Kosaka K, Nishio M, Ishida Y, Kawaichi M, Matsuda E. CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells. Sci Rep. 2016;6:34188 pubmed 出版商
  103. Kim E, Page P, Dellefave Castillo L, McNally E, Wyatt E. Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skelet Muscle. 2016;6:32 pubmed 出版商
  104. Perry B, Wyckelsma V, Murphy R, Steward C, Anderson M, Levinger I, et al. Dissociation between short-term unloading and resistance training effects on skeletal muscle Na+,K+-ATPase, muscle function, and fatigue in humans. J Appl Physiol (1985). 2016;121:1074-1086 pubmed 出版商
  105. Spendiff S, Vuda M, Gouspillou G, Aare S, Pérez A, Morais J, et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol. 2016;594:7361-7379 pubmed 出版商
  106. Xie X, Tsai S, Tsai M. COUP-TFII regulates satellite cell function and muscular dystrophy. J Clin Invest. 2016;126:3929-3941 pubmed 出版商
  107. Aare S, Spendiff S, Vuda M, Elkrief D, Pérez A, Wu Q, et al. Failed reinnervation in aging skeletal muscle. Skelet Muscle. 2016;6:29 pubmed 出版商
  108. Woodall B, Woodall M, Luongo T, Grisanti L, Tilley D, Elrod J, et al. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem. 2016;291:21913-21924 pubmed
  109. Ramazzotti G, Billi A, Manzoli L, Mazzetti C, Ruggeri A, Erneux C, et al. IPMK and β-catenin mediate PLC-β1-dependent signaling in myogenic differentiation. Oncotarget. 2016;7:84118-84127 pubmed 出版商
  110. Liang R, Dong W, Shen X, Peng X, Aceves A, Liu Y. Modeling Myotonic Dystrophy 1 in C2C12 Myoblast Cells. J Vis Exp. 2016;: pubmed 出版商
  111. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  112. Moon Y, Kim M, Kim S, Kim T. Apoptotic action of botulinum toxin on masseter muscle in rats: early and late changes in the expression of molecular markers. Springerplus. 2016;5:991 pubmed 出版商
  113. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  114. Kudová J, Prochazkova J, Vašíček O, Perecko T, Sedláčková M, Pesl M, et al. HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells. PLoS ONE. 2016;11:e0158358 pubmed 出版商
  115. Rui Y, Pan F, Mi J. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles. Anat Rec (Hoboken). 2016;299:1397-401 pubmed 出版商
  116. Lambert M, Richard E, Duban Deweer S, Krzewinski F, Deracinois B, Dupont E, et al. O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein-protein interactions. Biochim Biophys Acta. 2016;1860:2017-30 pubmed 出版商
  117. Vilmont V, Cadot B, Vezin E, Le Grand F, Gomes E. Dynein disruption perturbs post-synaptic components and contributes to impaired MuSK clustering at the NMJ: implication in ALS. Sci Rep. 2016;6:27804 pubmed 出版商
  118. Puchert M, Adams V, Linke A, Engele J. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise. Cell Signal. 2016;28:1205-15 pubmed 出版商
  119. Rao V, Ow J, Shankar S, Bharathy N, Manikandan J, Wang Y, et al. G9a promotes proliferation and inhibits cell cycle exit during myogenic differentiation. Nucleic Acids Res. 2016;44:8129-43 pubmed 出版商
  120. Jensen L, Jørgensen L, Bech R, Frandsen U, Schrøder H. Skeletal Muscle Remodelling as a Function of Disease Progression in Amyotrophic Lateral Sclerosis. Biomed Res Int. 2016;2016:5930621 pubmed 出版商
  121. Riaz M, Raz Y, van Putten M, Paniagua Soriano G, Krom Y, Florea B, et al. PABPN1-Dependent mRNA Processing Induces Muscle Wasting. PLoS Genet. 2016;12:e1006031 pubmed 出版商
  122. Yao Y, Norris E, Mason C, Strickland S. Laminin regulates PDGFR?(+) cell stemness and muscle development. Nat Commun. 2016;7:11415 pubmed 出版商
  123. Fajardo V, Smith I, Bombardier E, Chambers P, Quadrilatero J, Tupling A. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav. 2016;6:e00470 pubmed 出版商
  124. Cheng A, Yin H, Chen A, Liu Y, Chuang M, He H, et al. Celecoxib and Pioglitazone as Potential Therapeutics for Regulating TGF-?-Induced Hyaluronan in Dysthyroid Myopathy. Invest Ophthalmol Vis Sci. 2016;57:1951-9 pubmed 出版商
  125. Carrió E, Magli A, Muñoz M, Peinado M, Perlingeiro R, Suelves M. Muscle cell identity requires Pax7-mediated lineage-specific DNA demethylation. BMC Biol. 2016;14:30 pubmed 出版商
  126. Tanaka H, Ng N, Yang Yu Z, Casco Robles M, Maruo F, Tsonis P, et al. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts. Nat Commun. 2016;7:11069 pubmed 出版商
  127. Pannérec A, Springer M, Migliavacca E, Ireland A, Piasecki M, Karaz S, et al. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging (Albany NY). 2016;8:712-29 pubmed 出版商
  128. Davignon L, Chauveau C, Julien C, Dill C, Duband Goulet I, Cabet E, et al. The transcription coactivator ASC-1 is a regulator of skeletal myogenesis, and its deficiency causes a novel form of congenital muscle disease. Hum Mol Genet. 2016;25:1559-73 pubmed 出版商
  129. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  130. Park S, Yun Y, Lim J, Kim M, Kim S, Kim J, et al. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration. Nat Commun. 2016;7:10871 pubmed 出版商
  131. Stewart M, Lopez S, Nagandla H, Soibam B, Benham A, Nguyen J, et al. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis Model Mech. 2016;9:347-59 pubmed 出版商
  132. Gonçalves A, Thorsteinsdóttir S, Deries M. Rapid and simple method for in vivo ex utero development of mouse embryo explants. Differentiation. 2016;91:57-67 pubmed 出版商
  133. Andersen T, Schmidt J, Pedersen M, Krustrup P, Bangsbo J. The Effects of 52 Weeks of Soccer or Resistance Training on Body Composition and Muscle Function in +65-Year-Old Healthy Males--A Randomized Controlled Trial. PLoS ONE. 2016;11:e0148236 pubmed 出版商
  134. Nyberg M, Fiorenza M, Lund A, Christensen M, Rømer T, Piil P, et al. Adaptations to Speed Endurance Training in Highly Trained Soccer Players. Med Sci Sports Exerc. 2016;48:1355-64 pubmed 出版商
  135. Malecova B, Dall Agnese A, Madaro L, Gatto S, Coutinho Toto P, Albini S, et al. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. elife. 2016;5: pubmed 出版商
  136. Barone R, Macaluso F, Sangiorgi C, Campanella C, Marino Gammazza A, Moresi V, et al. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep. 2016;6:19781 pubmed 出版商
  137. Phelps K, Drouillard J, Silva M, Miranda L, Ebarb S, Van Bibber Krueger C, et al. Effect of extended postmortem aging and steak location on myofibrillar protein degradation and Warner-Bratzler shear force of beef M. semitendinosus steaks. J Anim Sci. 2016;94:412-23 pubmed 出版商
  138. Nagahisa H, Okabe K, Iuchi Y, Fujii J, Miyata H. Characteristics of Skeletal Muscle Fibers of SOD1 Knockout Mice. Oxid Med Cell Longev. 2016;2016:9345970 pubmed 出版商
  139. Arentson Lantz E, English K, Paddon Jones D, Fry C. Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. J Appl Physiol (1985). 2016;120:965-75 pubmed 出版商
  140. Quattrocelli M, Giacomazzi G, Broeckx S, Ceelen L, Bolca S, Spaas J, et al. Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates. Stem Cell Reports. 2016;6:55-63 pubmed 出版商
  141. Watanabe H, Nakano T, Saito R, Akasaka D, Saito K, Ogasawara H, et al. Serotonin Improves High Fat Diet Induced Obesity in Mice. PLoS ONE. 2016;11:e0147143 pubmed 出版商
  142. Foltz S, Modi J, Melick G, Abousaud M, Luan J, Fortunato M, et al. Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice. PLoS ONE. 2016;11:e0147049 pubmed 出版商
  143. Wyckelsma V, McKenna M, Levinger I, Petersen A, Lamboley C, Murphy R. Cell specific differences in the protein abundances of GAPDH and Na(+),K(+)-ATPase in skeletal muscle from aged individuals. Exp Gerontol. 2016;75:8-15 pubmed 出版商
  144. Loperfido M, Jarmin S, Dastidar S, Di Matteo M, Perini I, Moore M, et al. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts. Nucleic Acids Res. 2016;44:744-60 pubmed 出版商
  145. Palazzolo G, Quattrocelli M, Toelen J, Dominici R, Anastasia L, Tettamenti G, et al. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells Int. 2016;2016:4969430 pubmed 出版商
  146. Power G, Minozzo F, Spendiff S, Filion M, Konokhova Y, Purves Smith M, et al. Reduction in single muscle fiber rate of force development with aging is not attenuated in world class older masters athletes. Am J Physiol Cell Physiol. 2016;310:C318-27 pubmed 出版商
  147. Ye S, Zhang D, Cheng F, Wilson D, Mackay J, He K, et al. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. J Cell Sci. 2016;129:269-76 pubmed 出版商
  148. Tallon C, Russell K, Sakhalkar S, Andrapallayal N, Farah M. Length-dependent axo-terminal degeneration at the neuromuscular synapses of type II muscle in SOD1 mice. Neuroscience. 2016;312:179-89 pubmed 出版商
  149. Lee S, Won J, Yang J, Lee J, Kim S, Lee E, et al. AKAP6 inhibition impairs myoblast differentiation and muscle regeneration: Positive loop between AKAP6 and myogenin. Sci Rep. 2015;5:16523 pubmed 出版商
  150. He Q, Liu K, Tian Z, Du S. The Effects of Hsp90α1 Mutations on Myosin Thick Filament Organization. PLoS ONE. 2015;10:e0142573 pubmed 出版商
  151. Filareto A, Rinaldi F, Arpke R, Darabi R, Belanto J, Toso E, et al. Pax3-induced expansion enables the genetic correction of dystrophic satellite cells. Skelet Muscle. 2015;5:36 pubmed 出版商
  152. Zhang Y, Li W, Zhu M, Li Y, Xu Z, Zuo B. FHL3 differentially regulates the expression of MyHC isoforms through interactions with MyoD and pCREB. Cell Signal. 2016;28:60-73 pubmed 出版商
  153. Mohr M, Thomassen M, Girard O, Racinais S, Nybo L. Muscle variables of importance for physiological performance in competitive football. Eur J Appl Physiol. 2016;116:251-62 pubmed 出版商
  154. Dyer L, Lockyer P, Wu Y, Saha A, Cyr C, Moser M, et al. BMPER Promotes Epithelial-Mesenchymal Transition in the Developing Cardiac Cushions. PLoS ONE. 2015;10:e0139209 pubmed 出版商
  155. Yoo M, Kim B, Lee S, Jeong H, Park J, Seo D, et al. Syntaxin 4 regulates the surface localization of a promyogenic receptor Cdo thereby promoting myogenic differentiation. Skelet Muscle. 2015;5:28 pubmed 出版商
  156. Ebert S, Dyle M, Bullard S, Dierdorff J, Murry D, Fox D, et al. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. J Biol Chem. 2015;290:25497-511 pubmed 出版商
  157. Lo H, Nixon S, Hall T, Cowling B, Ferguson C, Morgan G, et al. The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J Cell Biol. 2015;210:833-49 pubmed 出版商
  158. Wang Y, Li Z, Zhang P, Poon E, Kong C, Boheler K, et al. Nitric Oxide-cGMP-PKG Pathway Acts on Orai1 to Inhibit the Hypertrophy of Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells. 2015;33:2973-84 pubmed 出版商
  159. Pourteymour S, Lee S, Langleite T, Eckardt K, Hjorth M, Bindesbøll C, et al. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep. 2015;3: pubmed 出版商
  160. Cohen T, Many G, Fleming B, Gnocchi V, Ghimbovschi S, Mosser D, et al. Upregulated IL-1β in dysferlin-deficient muscle attenuates regeneration by blunting the response to pro-inflammatory macrophages. Skelet Muscle. 2015;5:24 pubmed 出版商
  161. Wang H, Lööf S, Borg P, Nader G, Blau H, Simon A. Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nat Commun. 2015;6:7916 pubmed 出版商
  162. Ohsawa Y, Takayama K, Nishimatsu S, Okada T, Fujino M, Fukai Y, et al. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy. PLoS ONE. 2015;10:e0133713 pubmed 出版商
  163. Zou T, He D, Yu B, Yu J, Mao X, Zheng P, et al. Moderately increased maternal dietary energy intake delays foetal skeletal muscle differentiation and maturity in pigs. Eur J Nutr. 2016;55:1777-87 pubmed 出版商
  164. Hostrup M, Kalsen A, Onslev J, Jessen S, Haase C, Habib S, et al. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men. J Appl Physiol (1985). 2015;119:475-86 pubmed 出版商
  165. Jung E, Sim Y, Jeong H, Kim S, Yun Y, Song J, et al. Jmjd2C increases MyoD transcriptional activity through inhibiting G9a-dependent MyoD degradation. Biochim Biophys Acta. 2015;1849:1081-94 pubmed 出版商
  166. Ueda S, Kokaji Y, Simizu S, Honda K, Yoshino K, Kamisoyama H, et al. Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. Biosci Biotechnol Biochem. 2015;79:1867-75 pubmed 出版商
  167. Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, et al. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet. 2015;24:5219-33 pubmed 出版商
  168. Preuße K, Tveriakhina L, Schuster Gossler K, Gaspar C, Rosa A, Henrique D, et al. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015;11:e1005328 pubmed 出版商
  169. Lindskog C, Linné J, Fagerberg L, Hallström B, Sundberg C, Lindholm M, et al. The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics. 2015;16:475 pubmed 出版商
  170. Maza I, Caspi I, Zviran A, Chomsky E, Rais Y, Viukov S, et al. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat Biotechnol. 2015;33:769-74 pubmed 出版商
  171. Faggi F, Codenotti S, Poliani P, Cominelli M, Chiarelli N, Colombi M, et al. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE. 2015;10:e0130287 pubmed 出版商
  172. Nasipak B, Padilla Benavides T, Green K, Leszyk J, Mao W, Konda S, et al. Opposing calcium-dependent signalling pathways control skeletal muscle differentiation by regulating a chromatin remodelling enzyme. Nat Commun. 2015;6:7441 pubmed 出版商
  173. Shi S, Lu S, Sivasubramaniyam T, Revelo X, Cai E, Luk C, et al. DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice. Nat Commun. 2015;6:7415 pubmed 出版商
  174. Walton R, Finlin B, Mula J, Long D, Zhu B, Fry C, et al. Insulin-resistant subjects have normal angiogenic response to aerobic exercise training in skeletal muscle, but not in adipose tissue. Physiol Rep. 2015;3: pubmed 出版商
  175. Tian L, Ding S, You Y, Li T, Liu Y, Wu X, et al. Leiomodin-3-deficient mice display nemaline myopathy with fast-myofiber atrophy. Dis Model Mech. 2015;8:635-41 pubmed 出版商
  176. Fajardo V, Bombardier E, McMillan E, TRAN K, Wadsworth B, Gamu D, et al. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Dis Model Mech. 2015;8:999-1009 pubmed 出版商
  177. Clark D, Clark D, Beever J, Dilger A. Increased prenatal IGF2 expression due to the porcine intron3-G3072A mutation may be responsible for increased muscle mass. J Anim Sci. 2015;93:2546-58 pubmed 出版商
  178. Yamaleyeva L, Pulgar V, Lindsey S, Yamane L, Varagic J, McGee C, et al. Uterine artery dysfunction in pregnant ACE2 knockout mice is associated with placental hypoxia and reduced umbilical blood flow velocity. Am J Physiol Endocrinol Metab. 2015;309:E84-94 pubmed 出版商
  179. Oishi Y, Roy R, Ogata T, Ohira Y. Heat-Stress effects on the myosin heavy chain phenotype of rat soleus fibers during the early stages of regeneration. Muscle Nerve. 2015;52:1047-56 pubmed 出版商
  180. Lamarche Ã, Lala Tabbert N, Gunanayagam A, St Louis C, Wiper Bergeron N. Retinoic acid promotes myogenesis in myoblasts by antagonizing transforming growth factor-beta signaling via C/EBPβ. Skelet Muscle. 2015;5:8 pubmed 出版商
  181. Adams K, Rousso D, Umbach J, Novitch B. Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells. Nat Commun. 2015;6:6778 pubmed 出版商
  182. Sohn J, Lu A, Tang Y, Wang B, Huard J. Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice. Hum Mol Genet. 2015;24:3814-29 pubmed 出版商
  183. Jensen L, Andersen L, Schrøder H, Frandsen U, Sjøgaard G. Neuronal nitric oxide synthase is dislocated in type I fibers of myalgic muscle but can recover with physical exercise training. Biomed Res Int. 2015;2015:265278 pubmed 出版商
  184. Koutakis P, Myers S, Cluff K, Ha D, Haynatzki G, McComb R, et al. Abnormal myofiber morphology and limb dysfunction in claudication. J Surg Res. 2015;196:172-9 pubmed 出版商
  185. Anderson C, Hu J, Barnes R, Heidt A, Cornelissen I, Black B. Myocyte enhancer factor 2C function in skeletal muscle is required for normal growth and glucose metabolism in mice. Skelet Muscle. 2015;5:7 pubmed 出版商
  186. Simon H, ODELBERG S. Assessing cardiomyocyte proliferative capacity in the newt heart and primary culture. Methods Mol Biol. 2015;1290:227-40 pubmed 出版商
  187. Kim M, Horst A, Blinka S, Stamm K, Mahnke D, Schuman J, et al. Activin-A and Bmp4 levels modulate cell type specification during CHIR-induced cardiomyogenesis. PLoS ONE. 2015;10:e0118670 pubmed 出版商
  188. Feeney S, McGrath M, Sriratana A, Gehrig S, Lynch G, D Arcy C, et al. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS ONE. 2015;10:e0117665 pubmed 出版商
  189. Agley C, Rowlerson A, Velloso C, Lazarus N, Harridge S. Isolation and quantitative immunocytochemical characterization of primary myogenic cells and fibroblasts from human skeletal muscle. J Vis Exp. 2015;:52049 pubmed 出版商
  190. Hotchkiss A, Feridooni T, Baguma Nibasheka M, McNeil K, Chinni S, Pasumarthi K. Atrial natriuretic peptide inhibits cell cycle activity of embryonic cardiac progenitor cells via its NPRA receptor signaling axis. Am J Physiol Cell Physiol. 2015;308:C557-69 pubmed 出版商
  191. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  192. Mitchell C, Oikawa S, Ogborn D, Nates N, MacNeil L, Tarnopolsky M, et al. Daily chocolate milk consumption does not enhance the effect of resistance training in young and old men: a randomized controlled trial. Appl Physiol Nutr Metab. 2015;40:199-202 pubmed 出版商
  193. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed 出版商
  194. Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed 出版商
  195. Zhong Z, Zhao H, Mayo J, Chai Y. Different requirements for Wnt signaling in tongue myogenic subpopulations. J Dent Res. 2015;94:421-9 pubmed 出版商
  196. Muir L, Nguyen Q, Hauschka S, Chamberlain J. Engraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle. Mol Ther Methods Clin Dev. 2014;1:14025 pubmed
  197. Zhang D, Wang X, Li Y, Zhao L, Lu M, Yao X, et al. Thyroid hormone regulates muscle fiber type conversion via miR-133a1. J Cell Biol. 2014;207:753-66 pubmed 出版商
  198. Fry C, Lee J, Mula J, Kirby T, Jackson J, Liu F, et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med. 2015;21:76-80 pubmed 出版商
  199. Langone F, Cannata S, Fuoco C, Lettieri Barbato D, Testa S, Nardozza A, et al. Metformin protects skeletal muscle from cardiotoxin induced degeneration. PLoS ONE. 2014;9:e114018 pubmed 出版商
  200. Mori T, Agata N, Itoh Y, Miyazu Inoue M, Sokabe M, Taguchi T, et al. Stretch speed-dependent myofiber damage and functional deficits in rat skeletal muscle induced by lengthening contraction. Physiol Rep. 2014;2: pubmed 出版商
  201. Yi P, Chew L, Zhang Z, Ren H, Wang F, Cong X, et al. KIF5B transports BNIP-2 to regulate p38 mitogen-activated protein kinase activation and myoblast differentiation. Mol Biol Cell. 2015;26:29-42 pubmed 出版商
  202. Huertas Martínez J, Rello Varona S, Herrero Martín D, Barrau I, García Monclús S, Sáinz Jaspeado M, et al. Caveolin-1 is down-regulated in alveolar rhabdomyosarcomas and negatively regulates tumor growth. Oncotarget. 2014;5:9744-55 pubmed
  203. Lockhart M, Boukens B, Phelps A, Brown C, Toomer K, Burns T, et al. Alk3 mediated Bmp signaling controls the contribution of epicardially derived cells to the tissues of the atrioventricular junction. Dev Biol. 2014;396:8-18 pubmed 出版商
  204. Brun C, Périé L, Baraige F, Vernus B, Bonnieu A, Blanquet V. Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation. Cell Physiol Biochem. 2014;34:1241-59 pubmed 出版商
  205. Ruparelia A, Oorschot V, Vaz R, Ramm G, Bryson Richardson R. Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathol. 2014;128:821-33 pubmed 出版商
  206. Skovgaard C, Christensen P, Larsen S, Andersen T, Thomassen M, Bangsbo J. Concurrent speed endurance and resistance training improves performance, running economy, and muscle NHE1 in moderately trained runners. J Appl Physiol (1985). 2014;117:1097-109 pubmed 出版商
  207. White J, Barro M, Makarenkova H, Sanger J, Sanger J. Localization of sarcomeric proteins during myofibril assembly in cultured mouse primary skeletal myotubes. Anat Rec (Hoboken). 2014;297:1571-84 pubmed 出版商
  208. Gouspillou G, Sgarioto N, Norris B, Barbat Artigas S, Aubertin Leheudre M, Morais J, et al. The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans. PLoS ONE. 2014;9:e103044 pubmed 出版商
  209. Stefanetti R, Lamon S, Wallace M, Vendelbo M, Russell A, Vissing K. Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Arch. 2015;467:1523-1537 pubmed 出版商
  210. Janbaz A, Lindström M, Liu J, Pedrosa Domellöf F. Intermediate filaments in the human extraocular muscles. Invest Ophthalmol Vis Sci. 2014;55:5151-9 pubmed 出版商
  211. Andersen T, Schmidt J, Thomassen M, Hornstrup T, Frandsen U, Randers M, et al. A preliminary study: effects of football training on glucose control, body composition, and performance in men with type 2 diabetes. Scand J Med Sci Sports. 2014;24 Suppl 1:43-56 pubmed 出版商
  212. Fry C, Noehren B, Mula J, Ubele M, Westgate P, Kern P, et al. Fibre type-specific satellite cell response to aerobic training in sedentary adults. J Physiol. 2014;592:2625-35 pubmed 出版商
  213. Stefanetti R, Zacharewicz E, Della Gatta P, Garnham A, Russell A, Lamon S. Ageing has no effect on the regulation of the ubiquitin proteasome-related genes and proteins following resistance exercise. Front Physiol. 2014;5:30 pubmed 出版商
  214. Sousa Victor P, Gutarra S, García Prat L, Rodriguez Ubreva J, Ortet L, Ruiz Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316-21 pubmed 出版商
  215. Phelps K, Drouillard J, Jennings J, Depenbusch B, Van Bibber Krueger C, Miller K, et al. Effects of the Programmed Nutrition Beef Program on meat quality characteristics. J Anim Sci. 2014;92:1780-91 pubmed 出版商
  216. Lamboley C, Murphy R, McKenna M, Lamb G. Sarcoplasmic reticulum Ca2+ uptake and leak properties, and SERCA isoform expression, in type I and type II fibres of human skeletal muscle. J Physiol. 2014;592:1381-95 pubmed 出版商
  217. Galicia Vázquez G, Di Marco S, Lian X, Ma J, Gallouzi I, Pelletier J. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation. PLoS ONE. 2014;9:e87237 pubmed 出版商
  218. Gouspillou G, Sgarioto N, Kapchinsky S, Purves Smith F, Norris B, Pion C, et al. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J. 2014;28:1621-33 pubmed 出版商
  219. Garton F, Seto J, Quinlan K, Yang N, Houweling P, North K. ?-Actinin-3 deficiency alters muscle adaptation in response to denervation and immobilization. Hum Mol Genet. 2014;23:1879-93 pubmed 出版商
  220. Gastaldello S, Chen X, Callegari S, Masucci M. Caspase-1 promotes Epstein-Barr virus replication by targeting the large tegument protein deneddylase to the nucleus of productively infected cells. PLoS Pathog. 2013;9:e1003664 pubmed 出版商
  221. Tanaka M, Kishimoto K, Okuno H, Saito H, Itoi E. Vitamin D receptor gene silencing effects on differentiation of myogenic cell lines. Muscle Nerve. 2014;49:700-8 pubmed 出版商
  222. Hauerslev S, Sveen M, Vissing J, Krag T. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS ONE. 2013;8:e66929 pubmed 出版商
  223. Hernández Hernández J, Mallappa C, Nasipak B, Oesterreich S, Imbalzano A. The Scaffold attachment factor b1 (Safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state. Nucleic Acids Res. 2013;41:5704-16 pubmed 出版商
  224. Kobayashi N, Homma S, Okada T, Masuda T, Sato N, Nishiyama K, et al. Elucidation of target muscle and detailed development of dorsal motor neurons in chick embryo spinal cord. J Comp Neurol. 2013;521:2987-3002 pubmed 出版商
  225. Barton E, Park S, James J, Makarewich C, Philippou A, Eletto D, et al. Deletion of muscle GRP94 impairs both muscle and body growth by inhibiting local IGF production. FASEB J. 2012;26:3691-702 pubmed 出版商
  226. Issa M, Muruganandan S, Ernst M, Parlee S, Zabel B, Butcher E, et al. Chemokine-like receptor 1 regulates skeletal muscle cell myogenesis. Am J Physiol Cell Physiol. 2012;302:C1621-31 pubmed 出版商