这是一篇来自已证抗体库的有关人类 CYCS的综述,是根据278篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CYCS 抗体。
CYCS 同义词: CYC; HCS; THC4

艾博抗(上海)贸易有限公司
小鼠 单克隆(37BA11)
  • 免疫细胞化学; 大鼠; 1:500; 图 s1a, s1b
  • 免疫印迹; 大鼠; 1:1000; 图 2h
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110325)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 s1a, s1b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2h). Front Pharmacol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5f
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab90529)被用于被用于免疫印迹在小鼠样本上 (图 5f). Cells (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s11d
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab90529)被用于被用于免疫印迹在小鼠样本上 (图 s11d). Circulation (2021) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2a
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab133504)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2a). Aging Cell (2021) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:1000; 图 3g
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab133504)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2020) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, 7H8.2C12)被用于被用于免疫印迹在小鼠样本上 (图 3c). elife (2020) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫印迹; 人类; 图 8
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab133504)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2020) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2020) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 大鼠; 1:1000; 图 9f
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9f). J Neuroinflammation (2020) ncbi
小鼠 单克隆(37BA11)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110325)被用于被用于免疫印迹在人类样本上 (图 2c). Dev Cell (2019) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫印迹; 大鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab133504)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). BMC Biotechnol (2019) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 大鼠; 1:1000; 图 3f
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3f). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; pigs ; 1:500; 图 3c
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab90529)被用于被用于免疫细胞化学在pigs 样本上浓度为1:500 (图 3c). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2j
艾博抗(上海)贸易有限公司 CYCS抗体(abcam, ab90529)被用于被用于免疫印迹在小鼠样本上 (图 2j). J Mol Histol (2018) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫印迹; 人类; 1:3000; 图 4a
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab133504)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4a). Exp Ther Med (2017) ncbi
小鼠 单克隆(37BA11)
  • 免疫细胞化学; 人类; 图 4d
  • 免疫印迹; 大鼠; 图 4b
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110325)被用于被用于免疫细胞化学在人类样本上 (图 4d) 和 被用于免疫印迹在大鼠样本上 (图 4b). elife (2017) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab133504)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Am J Transl Res (2017) ncbi
小鼠 单克隆(7H8.2C12)
  • 其他; fruit fly ; 1:8000; 图 5b
  • 免疫印迹; fruit fly ; 1:10,000; 图 s2
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于其他在fruit fly 样本上浓度为1:8000 (图 5b) 和 被用于免疫印迹在fruit fly 样本上浓度为1:10,000 (图 s2). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2f
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab90529)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2f). Science (2017) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:1000; 图 st3
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st3). Sci Rep (2017) ncbi
小鼠 单克隆(37BA11)
  • 免疫组化; pigs ; 1:100; 图 5a
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110325)被用于被用于免疫组化在pigs 样本上浓度为1:100 (图 5a). PLoS ONE (2017) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, 7H8.2C12)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Syst Biol (2017) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab133504)被用于被用于免疫印迹在人类样本上 (图 5a). Redox Biol (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
小鼠 单克隆(37BA11)
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, 37BA11)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Exp Cell Res (2016) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, EPR1327)被用于被用于免疫印迹在小鼠样本上 (图 5b). PLoS ONE (2016) ncbi
小鼠 单克隆(37BA11)
  • 免疫印迹; 大鼠; 1:800; 图 6
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110325)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 6). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫细胞化学; 人类; 图 7d
  • 免疫印迹; 人类; 图 7c
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab133504)被用于被用于免疫细胞化学在人类样本上 (图 7d) 和 被用于免疫印迹在人类样本上 (图 7c). Cell Death Dis (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 大鼠; 图 2c
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在大鼠样本上 (图 2c). J Cereb Blood Flow Metab (2017) ncbi
小鼠 单克隆(37BA11)
  • 免疫细胞化学; 人类; 1:200; 图 2d
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, Ab110325)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2d) 和 被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:600; 图 1c
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab90529)被用于被用于免疫印迹在小鼠样本上浓度为1:600 (图 1c). Exp Ther Med (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 1:5000; 图 6
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫细胞化学; 人类; 1:100; 图 5a
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab133504)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; fruit fly ; 图 s3
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在fruit fly 样本上 (图 s3). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab133504)被用于被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110272)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Int J Mol Med (2016) ncbi
小鼠 单克隆(37BA11)
  • 免疫细胞化学; 人类; 图 8
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab198583)被用于被用于免疫细胞化学在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, Ab13575)被用于被用于免疫细胞化学在大鼠样本上. Biol Trace Elem Res (2016) ncbi
小鼠 单克隆(37BA11)
  • 免疫印迹; 大鼠; 图 2
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110325)被用于被用于免疫印迹在大鼠样本上 (图 2). EMBO Mol Med (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110272)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Oncogene (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 大鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Am J Physiol Renal Physiol (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 1:1000; 图 4h
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, 13575)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Oncotarget (2015) ncbi
小鼠 单克隆(37BA11)
  • 免疫组化; fruit fly
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110325)被用于被用于免疫组化在fruit fly 样本上. Nat Cell Biol (2015) ncbi
小鼠 单克隆(37BA11)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, Ab110325)被用于被用于免疫印迹在大鼠样本上. Apoptosis (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 表 1
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在人类样本上 (表 1). Methods Mol Biol (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. CNS Neurosci Ther (2014) ncbi
domestic rabbit 单克隆(EPR1327)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司 CYCS抗体(Epitomics, 3895-1)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(EP1326-80-5-4)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab76237)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(37BA11)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110325)被用于被用于免疫印迹在大鼠样本上. Obesity (Silver Spring) (2014) ncbi
小鼠 单克隆(37BA11)
  • 免疫沉淀; 小鼠; 图 3
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110325)被用于被用于免疫沉淀在小鼠样本上 (图 3). FASEB J (2014) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在人类样本上浓度为1:2000. Eur J Obstet Gynecol Reprod Biol (2014) ncbi
小鼠 单克隆(37BA11)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110325)被用于被用于免疫印迹在人类样本上. Mol Med Rep (2014) ncbi
小鼠 单克隆(37BA11)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab110325)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2014) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 CYCS抗体(Abcam, ab13575)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Biol Chem (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-8)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5a
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5a). elife (2022) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 大鼠; 1:2000; 图 7e
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13,560)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7e). Bioeng Transl Med (2021) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2021) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 小鼠; 1:1000; 图 s1c
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13560)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1c). Nat Commun (2021) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 小鼠; 1:800; 图 4i
圣克鲁斯生物技术 CYCS抗体(Santacruz Biotech, SC13156)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 4i). Redox Biol (2021) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 人类; 图 s1b
圣克鲁斯生物技术 CYCS抗体(Santa, sc-13156)被用于被用于免疫印迹在人类样本上 (图 s1b). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫印迹在人类样本上 (图 4f). Front Cell Dev Biol (2020) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 人类; 1:200; 图 6c
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, Sc-13560)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6c). Front Physiol (2020) ncbi
小鼠 单克隆(6H2)
  • 免疫印迹; 小鼠; 1:500; 图 1d
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13561)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1d). Cell Death Dis (2020) ncbi
小鼠 单克隆(A-8)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 图 3d
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 3d). Fluids Barriers CNS (2020) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 小鼠; 图 3h
圣克鲁斯生物技术 CYCS抗体(SantaCruz, sc-13156)被用于被用于免疫印迹在小鼠样本上 (图 3h). Hum Mol Genet (2018) ncbi
小鼠 单克隆(6H2)
  • 免疫印迹; 大鼠; 图 1b
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13561)被用于被用于免疫印迹在大鼠样本上 (图 1b). Biochim Biophys Acta Mol Cell Biol Lipids (2018) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 CYCS抗体(SantaCruz, SC-13156)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2017) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13156)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). mSphere (2017) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 人类; 1:500; 图 2a
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13560)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). J Extracell Vesicles (2017) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; pigs ; 图 1d
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫印迹在pigs 样本上 (图 1d). J Reprod Dev (2017) ncbi
小鼠 单克隆(A-8)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫印迹在小鼠样本上 (图 3a). Lab Invest (2017) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13560)被用于被用于免疫印迹在人类样本上 (图 4c). Nature (2016) ncbi
小鼠 单克隆(6H2)
  • 免疫印迹; 人类; 图 s4
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13561)被用于被用于免疫印迹在人类样本上 (图 s4). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 小鼠; 1:500; 图 4
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13560)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Int J Biol Sci (2016) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13560)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Endocrinology (2016) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 人类; 1:1000; 表 2
圣克鲁斯生物技术 CYCS抗体(santa Cruz, sc-13560)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 2). Oncol Lett (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫细胞化学; 人类; 图 4D
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc13156)被用于被用于免疫细胞化学在人类样本上 (图 4D). BMC Cancer (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 小鼠; 1:500; 表 1
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(6H2)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13561)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Neuroscience (2015) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13560)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在大鼠样本上 (图 2). Cell Death Differ (2016) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 人类; 1:1000; 图 6c
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Cell Death Dis (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, A-8)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 大鼠; 1:2000; 图 4
圣克鲁斯生物技术 CYCS抗体(santa Cruz, sc13156)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 CYCS抗体(santa Cruz, sc-13156)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(6H2)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13561)被用于被用于免疫印迹在人类样本上 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(7H8)
  • 免疫细胞化学; 人类; 图 s1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 CYCS抗体(santa Cruz, sc-13560)被用于被用于免疫细胞化学在人类样本上 (图 s1) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫细胞化学; 人类; 1:50; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 小鼠; 1:500; 图 2d
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, SC-13156)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2d). EMBO Mol Med (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13156)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫印迹在小鼠样本上 (图 3a). Apoptosis (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Dis (2014) ncbi
小鼠 单克隆(A-8)
  • 免疫组化; 小鼠; 1:200
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13156)被用于被用于免疫组化在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13560)被用于被用于免疫印迹在人类样本上. Biochimie (2014) ncbi
小鼠 单克隆(2G8)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 CYCS抗体(Santa Cruz biotechnology, 2G8)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2014) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13560)被用于被用于免疫印迹在小鼠样本上, 被用于免疫印迹在人类样本上 和 被用于免疫印迹在大鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(6H2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13561)被用于被用于免疫印迹在人类样本上. BMC Complement Altern Med (2014) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13560)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, SC-13156)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Auton Neurosci (2014) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 CYCS抗体(santa Cruz, sc-13156)被用于被用于免疫印迹在小鼠样本上 (图 2). Autophagy (2014) ncbi
小鼠 单克隆(A-8)
  • 免疫沉淀; 小鼠; 图 3
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13156)被用于被用于免疫沉淀在小鼠样本上 (图 3). FASEB J (2014) ncbi
小鼠 单克隆(A-8)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CYCS抗体(Santa Cruz, sc-13156)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(7H8)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc-13560)被用于被用于免疫印迹在小鼠样本上. Biochem J (2013) ncbi
小鼠 单克隆(6H2)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 CYCS抗体(Santa Cruz Biotechnology, sc13561)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Mol Endocrinol (2012) ncbi
赛默飞世尔
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 1:25; 图 s5a
赛默飞世尔 CYCS抗体(生活技术, 33-8200)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 s5a). Nat Commun (2017) ncbi
小鼠 单克隆(37BA11)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
赛默飞世尔 CYCS抗体(Invitrogen, 456100)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(37BA11)
  • 免疫组化; 小鼠; 1:300; 图 2c
  • 免疫印迹; 小鼠; 1:2000; 图 2e
赛默飞世尔 CYCS抗体(Invitrogen, 456100)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2e). Cryobiology (2017) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 CYCS抗体(Thermo Scientific, MA5-11674)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer (2016) ncbi
小鼠 单克隆(37BA11)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2
赛默飞世尔 CYCS抗体(Invitrogen, 456100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2). Neurobiol Aging (2016) ncbi
小鼠 单克隆(CTC03 (2B5))
  • 免疫细胞化学; 小鼠; 图 4a
赛默飞世尔 CYCS抗体(Thermo Fisher scientific, MA511823)被用于被用于免疫细胞化学在小鼠样本上 (图 4a). Toxicol In Vitro (2016) ncbi
小鼠 单克隆(CTC03 (2B5))
  • 免疫细胞化学; 人类; 1:250; 图 6
赛默飞世尔 CYCS抗体(Thermo, MA5-11823)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 6). J Vis Exp (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 非洲爪蛙; 1:1000; 图 7
赛默飞世尔 CYCS抗体(Invitrogen, 338500)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000 (图 7). Development (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫组化-石蜡切片; 大鼠; 图 4
赛默飞世尔 CYCS抗体(Thermo Scientific, MS 1192-R7)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4). Cancer Chemother Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛默飞世尔 CYCS抗体(Pierce, PA1-9586)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫组化-石蜡切片; 大鼠; 图 5
赛默飞世尔 CYCS抗体(Thermo Fisher Scientific, MS-1192-R7)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(37BA11)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 CYCS抗体(Invitrogen, 456100)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 CYCS抗体(Invitrogen, 33-8500)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Bioenerg Biomembr (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫组化; 大鼠; 图 6
赛默飞世尔 CYCS抗体(Thermo Fisher Scientific, MS-1192-R7)被用于被用于免疫组化在大鼠样本上 (图 6). PLoS ONE (2012) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 CYCS抗体(Lab Vision, MS-1192)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Oncol (2012) ncbi
小鼠 单克隆(37BA11)
  • 免疫印迹; 牛
赛默飞世尔 CYCS抗体(Invitrogen, 456100)被用于被用于免疫印迹在牛样本上. EMBO J (2011) ncbi
小鼠 单克隆(37BA11)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1
赛默飞世尔 CYCS抗体(Invitrogen, 456100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1). DNA Repair (Amst) (2011) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 大鼠; 1:1000; 图 15
赛默飞世尔 CYCS抗体(Zymed, 7H8.2C12)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 15). Toxicol Lett (2010) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 大鼠; 1:2000; 表 1
赛默飞世尔 CYCS抗体(Zymed, 7H8.2C12)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (表 1). Toxicology (2009) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫组化; fruit fly ; 1:200
  • 免疫印迹; fruit fly ; 1:500
赛默飞世尔 CYCS抗体(Zymed, 7H8.2C12)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 和 被用于免疫印迹在fruit fly 样本上浓度为1:500. Dev Cell (2007) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 大鼠; 1:400; 图 6
赛默飞世尔 CYCS抗体(Zymed Laboratories, clone 7H8.2C12)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 6). J Neurochem (2005) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 1:1000; 图 2
赛默飞世尔 CYCS抗体(Zymed Laboratories, 33-8200)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). J Neurochem (2004) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 CYCS抗体(Zymed, 7H8.2C12)被用于被用于免疫印迹在小鼠样本上 (图 4). Scand J Immunol (2003) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫组化-自由浮动切片; 鸡
赛默飞世尔 CYCS抗体(Zymed, 33?C8200)被用于被用于免疫组化-自由浮动切片在鸡样本上. Neuroscience (2003) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 大鼠; 1:200; 图 3
赛默飞世尔 CYCS抗体(Zymed, 7H8.2C12)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 3). FEBS Lett (2002) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 CYCS抗体(分子探针, 7H8.2C12)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (1999) ncbi
美天旎
人类 单克隆(REA702)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
美天旎 CYCS抗体(Miltenyl Biotec, 130-111-180)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). Immunity (2022) ncbi
BioLegend
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:1000; 图 7e
BioLegend CYCS抗体(Biolegend, 612504)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7e). Diabetologia (2019) ncbi
Novus Biologicals
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; fruit fly ; 图 3c
Novus Biologicals CYCS抗体(Novus Biologicals, 7H8.2C12)被用于被用于免疫印迹在fruit fly 样本上 (图 3c). EMBO J (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 11940)被用于被用于免疫印迹在小鼠样本上 (图 3f). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 CYCS抗体(CST, 4280)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4c
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 4272)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 11940)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2c
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 4272)被用于被用于免疫印迹在大鼠样本上 (图 2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4280)被用于被用于免疫印迹在小鼠样本上 (图 s4). Hepatology (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4272)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 小鼠; 1:25; 图 4a
赛信通(上海)生物试剂有限公司 CYCS抗体(CST, 11940)被用于被用于免疫印迹在小鼠样本上浓度为1:25 (图 4a). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 大鼠; 图 1d
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signalling Technology, 11940)被用于被用于免疫印迹在小鼠样本上 (图 1a) 和 被用于免疫印迹在大鼠样本上 (图 1d). J Cachexia Sarcopenia Muscle (2020) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 11940)被用于被用于免疫印迹在小鼠样本上 (图 2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 8e
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4272)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 8e). Theranostics (2020) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 119402)被用于被用于免疫印迹在大鼠样本上 (图 5a). elife (2019) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 4a
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 4272)被用于被用于流式细胞仪在人类样本上 (图 4a). Physiol Rep (2019) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 11940S)被用于被用于免疫印迹在人类样本上 (图 9). Biomolecules (2019) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 11940)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). elife (2019) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 大鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 11940S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3c
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 4272)被用于被用于免疫印迹在大鼠样本上 (图 3c). Oncotarget (2018) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 11940)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Immunol Res (2017) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4280)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4280)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Diabetes (2017) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4280)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2n
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4272)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2n). Nat Commun (2017) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 大鼠; 图 3b
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 136F3)被用于被用于免疫印迹在大鼠样本上 (图 3b). Cardiovasc Res (2017) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 11940T)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Appl Physiol Nutr Metab (2017) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4280)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). J Physiol (2017) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 11940)被用于被用于免疫印迹在小鼠样本上 (图 4a). Front Physiol (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 图 sf6
赛信通(上海)生物试剂有限公司 CYCS抗体(cell signalling, 12963S)被用于被用于免疫细胞化学在人类样本上 (图 sf6). Nature (2016) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 11940S)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 人类; 1:500; 图 6c
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4280)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4272S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Mol Cell Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell signaling, 4272s)被用于被用于免疫印迹在小鼠样本上 (图 4b). Diabetes (2016) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4280)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 4280)被用于被用于免疫印迹在人类样本上 (图 4d). FEBS Open Bio (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4f
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 4272S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4f). Sci Rep (2016) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4280)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell signaling, 11940)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 11940)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 小鼠; 1:100; 表 1
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signalling, 4280)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (表 1). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 11940)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 图 s6d
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 12963)被用于被用于免疫细胞化学在人类样本上 (图 s6d). Oncotarget (2015) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 4280)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell signaling technology, 11940)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Arch Toxicol (2016) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, D18C7)被用于被用于免疫印迹在小鼠样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 11940)被用于被用于免疫印迹在大鼠样本上 (图 4). J Transl Med (2015) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 人类; 图 4D
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4280)被用于被用于免疫印迹在人类样本上 (图 4D). Oncotarget (2015) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 4280)被用于被用于免疫印迹在小鼠样本上. Br J Nutr (2014) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 11940)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D18C7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling Technology, 11940)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(136F3)
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司 CYCS抗体(Cell Signaling, 4280)被用于被用于免疫印迹在人类样本上 (图 s5). Nat Chem Biol (2014) ncbi
碧迪BD
小鼠 单克隆(7H8.2C12)
  • 免疫组化; 小鼠; 1:500; 图 2a"
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a"). Cell Death Dis (2021) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 图 3g
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在小鼠样本上 (图 3g). Neuron (2021) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
碧迪BD CYCS抗体(BDbioscience, 556433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Cell Death Dis (2020) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:1000; 图 2d
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). elife (2019) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 1:500; 图 4c
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4c). Sci Adv (2019) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 7e
碧迪BD CYCS抗体(BD, 556433)被用于被用于免疫印迹在人类样本上 (图 7e). Dev Cell (2018) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 图 2f
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在小鼠样本上 (图 2f). Science (2018) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 1:50; 图 5a
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5a). J Cell Biol (2018) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 图 1b
碧迪BD CYCS抗体(BioSciences, 556432)被用于被用于免疫细胞化学在人类样本上 (图 1b). Hum Mol Genet (2018) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 3b
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在人类样本上 (图 3b). Sci Rep (2017) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 小鼠; 1:300; 图 3c
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 3c). Nat Cell Biol (2017) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 图 2b
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Metab (2017) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; African green monkey; 1:2000; 图 6b
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:2000 (图 6b). PLoS ONE (2017) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫细胞化学; 人类; 1:200; 图 5c
  • 免疫印迹; 人类; 1:500; 图 5a
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5a). J Biol Chem (2017) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 1:1000; 图 3
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). Cell Logist (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫印迹; 人类; 图 3b
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Nutr Food Res (2017) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 1e
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在人类样本上 (图 1e). Antioxid Redox Signal (2017) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 3b
碧迪BD CYCS抗体(BD biosciences, 556433)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Biochem Cell Biol (2017) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 6b
碧迪BD CYCS抗体(BD Pharmingen, 556432)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 6b). PLoS Genet (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b). Nat Immunol (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 1:500; 图 5c
碧迪BD CYCS抗体(BD Bioscience, 556433)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5c). Toxicol Appl Pharmacol (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 8
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在人类样本上 (图 8). elife (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 1:1000; 图 s2
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s2). BMC Biol (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 拟南芥; 1:1000; 图 s8
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在拟南芥样本上浓度为1:1000 (图 s8). Plant Physiol (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 1:1000; 图 4c
碧迪BD CYCS抗体(BD biosciences, 556432)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4c). Nat Commun (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫组化-石蜡切片; 人类; 图 2b
碧迪BD CYCS抗体(BD Bioscience, 6H2.B4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). J Biol Chem (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 图 3c
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在人类样本上 (图 3c). Blood (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 图 2
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Death Discov (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 流式细胞仪; 人类; 图 s2
碧迪BD CYCS抗体(Becton Dickinson, 558709)被用于被用于流式细胞仪在人类样本上 (图 s2). Oncotarget (2017) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 图 2
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在小鼠样本上 (图 2). Dis Model Mech (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 小鼠
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在小鼠样本上. Int J Mol Sci (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 小鼠; 图 2
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 1:500; 图 7
碧迪BD CYCS抗体(BD Bioscience, 556432)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7). PLoS ONE (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫印迹; 小鼠; 1:500; 图 s5
碧迪BD CYCS抗体(BD Pharmingen, 556432)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 图 1
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Differ (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 2
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 1:300
碧迪BD CYCS抗体(BD, 556432)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Nat Commun (2016) ncbi
小鼠 单克隆(6H2.B4)
  • 其他; 人类; 图 st1
碧迪BD CYCS抗体(BD, 6H2.B4)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 8
碧迪BD CYCS抗体(BD Biosciences, 7H8.2C12)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 3
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 3). Nat Med (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:500; 图 2
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Autophagy (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:1000; 图 5
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫印迹; 非洲爪蛙; 图 7
碧迪BD CYCS抗体(BD Pharmingen, 556432)被用于被用于免疫印迹在非洲爪蛙样本上 (图 7). J Biol Chem (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 1:500; 图 2
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 图 2
碧迪BD CYCS抗体(BD Pharmingen, 556432)被用于被用于免疫细胞化学在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠
碧迪BD CYCS抗体(BD Pharmingen, #556433)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 图 1b
碧迪BD CYCS抗体(BD Bioscience, 556433)被用于被用于免疫印迹在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 6a
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在人类样本上 (图 6a). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 大鼠; 图 6
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在大鼠样本上 (图 6). Int J Mol Sci (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫组化; 小鼠; 1:100
碧迪BD CYCS抗体(BD Pharmingen, 556432)被用于被用于免疫组化在小鼠样本上浓度为1:100. Eur J Neurosci (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:500; 图 5
碧迪BD CYCS抗体(Millipore, 556433)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Naunyn Schmiedebergs Arch Pharmacol (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 图 4
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在人类样本上 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 图 3c
碧迪BD CYCS抗体(BD Bioscience, 556432)被用于被用于免疫细胞化学在人类样本上 (图 3c). Oncoscience (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 4c, 5d
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在人类样本上 (图 4c, 5d). PLoS ONE (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 1:1000
碧迪BD CYCS抗体(Becton Dickenson, 556433)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncotarget (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫组化-冰冻切片; 小鼠; 图 5
碧迪BD CYCS抗体(BD Pharmingen, 6H2.B4)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Hum Mol Genet (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:200; 图 8
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 图 1
碧迪BD CYCS抗体(Becton Dickinson, 556432)被用于被用于免疫细胞化学在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 1e
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在人类样本上 (图 1e). PLoS ONE (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 4
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在人类样本上 (图 4). Cell Death Dis (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫印迹; 非洲爪蛙; 图 1
碧迪BD CYCS抗体(BD Pharmingen, 556432)被用于被用于免疫印迹在非洲爪蛙样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠
碧迪BD CYCS抗体(BD Biosciences, #556433)被用于被用于免疫印迹在小鼠样本上. Front Physiol (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 3
碧迪BD CYCS抗体(BD, 556433)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 1:1000
碧迪BD CYCS抗体(BD Pharmingen, 556432)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Cancer Res (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 图 1a
碧迪BD CYCS抗体(BD, 556433)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nat Immunol (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 2b
  • 免疫印迹; 小鼠; 图 2b
碧迪BD CYCS抗体(BD, 7H8.2C12)被用于被用于免疫印迹在人类样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2b). Cell Death Dis (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类; 1:50; 图 2a
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2a). Int J Oncol (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类
碧迪BD CYCS抗体(BD Pharmigen, 556433)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫印迹; 人类; 1:700
碧迪BD CYCS抗体(BD Biosciences, 55643)被用于被用于免疫印迹在人类样本上浓度为1:700. Chem Biol Interact (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 1:700
碧迪BD CYCS抗体(BD Biosciences, 55643)被用于被用于免疫印迹在人类样本上浓度为1:700. Chem Biol Interact (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 图 1a
碧迪BD CYCS抗体(BD Pharmingen, 7H8.2C12)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Differ (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 1:1000
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:1000; 图 1
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 猕猴; 图 2
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在猕猴样本上 (图 2). Nature (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:1000; 图 5
碧迪BD CYCS抗体(Becton Dickinson, 556433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫细胞化学; 人类; 1:100
碧迪BD CYCS抗体(BD Pharmingen, 7H8.2C12)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Cell Death Dis (2014) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类
碧迪BD CYCS抗体(BD, 556432)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2014) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类; 图 3
碧迪BD CYCS抗体(BD Biosciences, 7H8.2C12)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2014) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Endocrinol Metab (2014) ncbi
小鼠 单克隆(6H2.B4)
  • 流式细胞仪; 人类; 1:200
碧迪BD CYCS抗体(BD, 556432)被用于被用于流式细胞仪在人类样本上浓度为1:200. Mol Oncol (2015) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫组化; fruit fly ; 1:1000; 图 3s
碧迪BD CYCS抗体(BD Labs, 556433)被用于被用于免疫组化在fruit fly 样本上浓度为1:1000 (图 3s). Dis Model Mech (2014) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫印迹; 人类
碧迪BD CYCS抗体(BD Pharmingen, 6H2.B4)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫组化; fruit fly ; 1:2000
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫组化在fruit fly 样本上浓度为1:2000. PLoS Genet (2014) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类
碧迪BD CYCS抗体(BD Biosciences, 556432)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类
碧迪BD CYCS抗体(BD Pharmigen, 556433)被用于被用于免疫印迹在人类样本上. J Physiol (2014) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠
碧迪BD CYCS抗体(BD Biosciences Pharmingen, 556433)被用于被用于免疫印迹在小鼠样本上. Antioxid Redox Signal (2014) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 人类
碧迪BD CYCS抗体(BD Biosciences, 6H2.B4)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫细胞化学; 人类
碧迪BD CYCS抗体(BD Biosciences, 7H8.2C12)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Br J Pharmacol (2014) ncbi
小鼠 单克隆(6H2.B4)
  • 免疫细胞化学; 小鼠; 1:400
碧迪BD CYCS抗体(BD Pharmingen, 556432)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. Stem Cell Res (2013) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫组化-石蜡切片; 小鼠; 1:25
  • 免疫印迹; 小鼠; 1:1,000
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25 和 被用于免疫印迹在小鼠样本上浓度为1:1,000. J Cereb Blood Flow Metab (2013) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 小鼠
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在人类样本上. J Ethnopharmacol (2011) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类
碧迪BD CYCS抗体(BD Biosciences, 556433)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2010) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类
碧迪BD CYCS抗体(Pharmingen, 556433)被用于被用于免疫印迹在人类样本上. J Neurochem (2008) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 人类
碧迪BD CYCS抗体(Pharmingen, 7H8.2C12)被用于被用于免疫印迹在人类样本上. Cell Res (2008) ncbi
小鼠 单克隆(7H8.2C12)
  • 免疫印迹; 猕猴
碧迪BD CYCS抗体(BD Pharmingen, 556433)被用于被用于免疫印迹在猕猴样本上. J Virol (2007) ncbi
文章列表
  1. Yoshioka N, Kurose M, Yano M, Tran D, Okuda S, Mori Ochiai Y, et al. Isoform-specific mutation in Dystonin-b gene causes late-onset protein aggregate myopathy and cardiomyopathy. elife. 2022;11: pubmed 出版商
  2. Gao H, Sun H, Yan N, Zhao P, Xu H, Zheng W, et al. ATP13A2 Declines Zinc-Induced Accumulation of α-Synuclein in a Parkinson's Disease Model. Int J Mol Sci. 2022;23: pubmed 出版商
  3. Zheng C, Xuan W, Chen Z, Zhang R, Huang X, Zhu Y, et al. CX3CL1 Worsens Cardiorenal Dysfunction and Serves as a Therapeutic Target of Canagliflozin for Cardiorenal Syndrome. Front Pharmacol. 2022;13:848310 pubmed 出版商
  4. Zhang X, Han J, Xu Y, Cai M, Gao F, Han J, et al. TSPO Deficiency Exacerbates GSDMD-Mediated Macrophage Pyroptosis in Inflammatory Bowel Disease. Cells. 2022;11: pubmed 出版商
  5. Simpson D, Pang J, Weir A, Kong I, Fritsch M, Rashidi M, et al. Interferon-γ primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity. 2022;55:423-441.e9 pubmed 出版商
  6. Ali A, Kuo W, Kuo C, Lo J, Chen M, Daddam J, et al. E3 ligase activity of Carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton's jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med. 2021;6:e10234 pubmed 出版商
  7. Chiang C, Hong Y. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Sci Rep. 2021;11:18172 pubmed 出版商
  8. Yan D, Li X, Yang Q, Huang Q, Yao L, Zhang P, et al. Regulation of Bax-dependent apoptosis by mitochondrial deubiquitinase USP30. Cell Death Discov. 2021;7:211 pubmed 出版商
  9. Beaulac H, Gilels F, Zhang J, Jeoung S, White P. Primed to die: an investigation of the genetic mechanisms underlying noise-induced hearing loss and cochlear damage in homozygous Foxo3-knockout mice. Cell Death Dis. 2021;12:682 pubmed 出版商
  10. Traube F, Özdemir D, Sahin H, Scheel C, Glück A, Geserich A, et al. Redirected nuclear glutamate dehydrogenase supplies Tet3 with α-ketoglutarate in neurons. Nat Commun. 2021;12:4100 pubmed 出版商
  11. Ku C, Wuputra K, Kato K, Pan J, Li C, Tsai M, et al. Deletion of Jdp2 enhances Slc7a11 expression in Atoh-1 positive cerebellum granule cell progenitors in vivo. Stem Cell Res Ther. 2021;12:369 pubmed 出版商
  12. Ostriker A, Xie Y, Chakraborty R, Sizer A, Bai Y, Ding M, et al. TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy. Circulation. 2021;144:455-470 pubmed 出版商
  13. Zhang J, Wu N, Wang S, Yao Z, Xiao F, Lu J, et al. Neuronal loss and microgliosis are restricted to the core of Aβ deposits in mouse models of Alzheimer's disease. Aging Cell. 2021;20:e13380 pubmed 出版商
  14. Pramanick A, Chakraborti S, Mahata T, Basak M, Das K, Verma S, et al. G protein β5-ATM complexes drive acetaminophen-induced hepatotoxicity. Redox Biol. 2021;43:101965 pubmed 出版商
  15. Tian F, Zhang Y. Overexpression of SERCA2a Alleviates Cardiac Microvascular Ischemic Injury by Suppressing Mfn2-Mediated ER/Mitochondrial Calcium Tethering. Front Cell Dev Biol. 2021;9:636553 pubmed 出版商
  16. Kusakabe J, Hata K, Miyauchi H, Tajima T, Wang Y, Tamaki I, et al. Complement-5 Inhibition Deters Progression of Fulminant Hepatitis to Acute Liver Failure in Murine Models. Cell Mol Gastroenterol Hepatol. 2021;11:1351-1367 pubmed 出版商
  17. Liu J, Xie Y, Cui Z, Xia T, Wan L, Zhou H, et al. Bnip3 interacts with vimentin, an intermediate filament protein, and regulates autophagy of hepatic stellate cells. Aging (Albany NY). 2020;13:957-972 pubmed 出版商
  18. Chiu C, Weng Y, Huang Y, Chen R, Liu Y, Yeh T, et al. (D620N) VPS35 causes the impairment of Wnt/β-catenin signaling cascade and mitochondrial dysfunction in a PARK17 knockin mouse model. Cell Death Dis. 2020;11:1018 pubmed 出版商
  19. Xu Y, Zhi F, Mao J, Peng Y, Shao N, Balboni G, et al. δ-opioid receptor activation protects against Parkinson's disease-related mitochondrial dysfunction by enhancing PINK1/Parkin-dependent mitophagy. Aging (Albany NY). 2020;12:25035-25059 pubmed 出版商
  20. Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht M, et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron. 2021;109:299-313.e9 pubmed 出版商
  21. Chandler R, Venturoni L, Liao J, Hubbard B, Schneller J, Hoffmann V, et al. Promoterless, Nuclease-Free Genome Editing Confers a Growth Advantage for Corrected Hepatocytes in Mice With Methylmalonic Acidemia. Hepatology. 2021;73:2223-2237 pubmed 出版商
  22. Panic V, Pearson S, Banks J, Tippetts T, Velasco Silva J, Lee S, et al. Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis. elife. 2020;9: pubmed 出版商
  23. Yin S, Song M, Zhao R, Liu X, Kang W, Lee J, et al. Xanthohumol Inhibits the Growth of Keratin 18-Overexpressed Esophageal Squamous Cell Carcinoma in vitro and in vivo. Front Cell Dev Biol. 2020;8:366 pubmed 出版商
  24. Zhao J, Li G, Zhao X, Lin X, Gao Y, Raimundo N, et al. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY). 2020;12:5590-5611 pubmed 出版商
  25. Arc Chagnaud C, Py G, Fovet T, Roumanille R, Demangel R, Pagano A, et al. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front Physiol. 2020;11:71 pubmed 出版商
  26. Hu H, Hone E, Provencher E, Sprowls S, Farooqi I, Corbin D, et al. MiR-34a Interacts with Cytochrome c and Shapes Stroke Outcomes. Sci Rep. 2020;10:3233 pubmed 出版商
  27. Shah D, Nisr R, Stretton C, Krasteva Christ G, Hundal H. Caveolin-3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function. J Cachexia Sarcopenia Muscle. 2020;11:838-858 pubmed 出版商
  28. Coccia E, Planells Ferrer L, Badillos Rodríguez R, Pascual M, Segura M, Fernández Hernández R, et al. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis. 2020;11:82 pubmed 出版商
  29. Li T, Li K, Zhang S, Wang Y, Xu Y, Cronin S, et al. Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice. Cell Death Dis. 2020;11:77 pubmed 出版商
  30. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  31. Sheng L, Zhang J, Li L, Xie X, Wen X, Cheng K. Design, Synthesis, and Evaluation of Novel 2-Methoxyestradiol Derivatives as Apoptotic Inducers Through an Intrinsic Apoptosis Pathway. Biomolecules. 2020;10: pubmed 出版商
  32. Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky D, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;:1-15 pubmed 出版商
  33. Christensen I, Wu Q, Bohlbro A, Skals M, Damkier H, Hübner C, et al. Genetic disruption of slc4a10 alters the capacity for cellular metabolism and vectorial ion transport in the choroid plexus epithelium. Fluids Barriers CNS. 2020;17:2 pubmed 出版商
  34. He Y, Li W, Zheng Z, Zhao L, Li W, Wang Y, et al. Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death. Theranostics. 2020;10:133-150 pubmed 出版商
  35. Giridharan V, Collodel A, Generoso J, Scaini G, Wassather R, Selvaraj S, et al. Neuroinflammation trajectories precede cognitive impairment after experimental meningitis-evidence from an in vivo PET study. J Neuroinflammation. 2020;17:5 pubmed 出版商
  36. Herring S, Moon H, Rawal P, Chhibber A, Zhao L. Brain clusterin protein isoforms and mitochondrial localization. elife. 2019;8: pubmed 出版商
  37. Høgild M, Gudiksen A, Pilegaard H, Stødkilde Jørgensen H, Pedersen S, Møller N, et al. Redundancy in regulation of lipid accumulation in skeletal muscle during prolonged fasting in obese men. Physiol Rep. 2019;7:e14285 pubmed 出版商
  38. Nakamura Y, Dryanovski D, Kimura Y, Jackson S, Woods A, Yasui Y, et al. Cocaine-induced endocannabinoid signaling mediated by sigma-1 receptors and extracellular vesicle secretion. elife. 2019;8: pubmed 出版商
  39. Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules. 2019;9: pubmed 出版商
  40. Shemorry A, Harnoss J, Guttman O, Marsters S, Komuves L, Lawrence D, et al. Caspase-mediated cleavage of IRE1 controls apoptotic cell commitment during endoplasmic reticulum stress. elife. 2019;8: pubmed 出版商
  41. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  42. Princely Abudu Y, Pankiv S, Mathai B, Håkon Lystad A, Bindesbøll C, Brenne H, et al. NIPSNAP1 and NIPSNAP2 Act as "Eat Me" Signals for Mitophagy. Dev Cell. 2019;49:509-525.e12 pubmed 出版商
  43. Zhang G, Liu Y, Xu L, Sha C, Zhang H, Xu W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol. 2019;19:10 pubmed 出版商
  44. Chao H, Lin C, Zuo Q, Liu Y, Xiao M, Xu X, et al. Cardiolipin-Dependent Mitophagy Guides Outcome after Traumatic Brain Injury. J Neurosci. 2019;39:1930-1943 pubmed 出版商
  45. May J, Kouri F, Hurley L, Liu J, Tommasini Ghelfi S, Ji Y, et al. IDH3α regulates one-carbon metabolism in glioblastoma. Sci Adv. 2019;5:eaat0456 pubmed 出版商
  46. Yoshitake S, Murakami T, Suzuma K, Yoshitake T, Uji A, Morooka S, et al. Anti-fumarase antibody promotes the dropout of photoreceptor inner and outer segments in diabetic macular oedema. Diabetologia. 2019;62:504-516 pubmed 出版商
  47. Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol. 2019;20:261-274 pubmed 出版商
  48. Zhao H, Pan W, Chen L, Luo Y, Xu R. Nur77 promotes cerebral ischemia-reperfusion injury via activating INF2-mediated mitochondrial fragmentation. J Mol Histol. 2018;49:599-613 pubmed 出版商
  49. Fajardo V, Chambers P, Juracic E, Rietze B, Gamu D, Bellissimo C, et al. Sarcolipin deletion in mdx mice impairs calcineurin signalling and worsens dystrophic pathology. Hum Mol Genet. 2018;27:4094-4102 pubmed 出版商
  50. Kim J, Shin S, Kang J, Kim J. HX-1171 attenuates pancreatic β-cell apoptosis and hyperglycemia-mediated oxidative stress via Nrf2 activation in streptozotocin-induced diabetic model. Oncotarget. 2018;9:24260-24271 pubmed 出版商
  51. Puri C, Vicinanza M, Ashkenazi A, Gratian M, Zhang Q, Bento C, et al. The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A. Dev Cell. 2018;45:114-131.e8 pubmed 出版商
  52. McArthur K, Whitehead L, Heddleston J, Li L, Padman B, Oorschot V, et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science. 2018;359: pubmed 出版商
  53. Pleiner T, Bates M, Gorlich D. A toolbox of anti-mouse and anti-rabbit IgG secondary nanobodies. J Cell Biol. 2018;217:1143-1154 pubmed 出版商
  54. Blunsom N, Gomez Espinosa E, Ashlin T, Cockcroft S. Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein, TAMM41 and not due to the integral membrane protein, CDP-diacylglycerol synthase 1. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:284-298 pubmed 出版商
  55. Shuang W, Hou L, Zhu Y, Li Q, Hu W. Mcl-1 stabilization confers resistance to taxol in human gastric cancer. Oncotarget. 2017;8:82981-82990 pubmed 出版商
  56. Straub I, Janer A, Weraarpachai W, Zinman L, Robertson J, Rogaeva E, et al. Loss of CHCHD10-CHCHD2 complexes required for respiration underlies the pathogenicity of a CHCHD10 mutation in ALS. Hum Mol Genet. 2018;27:178-189 pubmed 出版商
  57. Sorokina I, Denisenko T, Imreh G, Tyurin Kuzmin P, Kaminskyy V, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571 pubmed 出版商
  58. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C, Cao K, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. 2017;19:1116-1129 pubmed 出版商
  59. Takaki T, Montagner M, Serres M, Le Berre M, Russell M, Collinson L, et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat Commun. 2017;8:16013 pubmed 出版商
  60. Kelly F, Wei B, Cygan A, Parker M, Boulanger M, Boothroyd J. Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association. mSphere. 2017;2: pubmed 出版商
  61. Xu X, Cui Y, Cao L, Zhang Y, Yin Y, Hu X. PCSK9 regulates apoptosis in human lung adenocarcinoma A549 cells via endoplasmic reticulum stress and mitochondrial signaling pathways. Exp Ther Med. 2017;13:1993-1999 pubmed 出版商
  62. Koh J, Hancock C, Terada S, Higashida K, Holloszy J, Han D. PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise. Cell Metab. 2017;25:1176-1185.e5 pubmed 出版商
  63. Monterisi S, Lobo M, Livie C, Castle J, Weinberger M, Baillie G, et al. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling. elife. 2017;6: pubmed 出版商
  64. Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887-899 pubmed
  65. Newman L, Schiavon C, Zhou C, Kahn R. The abundance of the ARL2 GTPase and its GAP, ELMOD2, at mitochondria are modulated by the fusogenic activity of mitofusins and stressors. PLoS ONE. 2017;12:e0175164 pubmed 出版商
  66. Jiang Y, Lin S, Chen J, Tsai H, Hsieh T, Fu C. Electron tomographic analysis reveals ultrastructural features of mitochondrial cristae architecture which reflect energetic state and aging. Sci Rep. 2017;7:45474 pubmed 出版商
  67. Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, et al. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non-Small Cell Lung Cancer. Cancer Immunol Res. 2017;5:363-375 pubmed 出版商
  68. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  69. Jong A, Wu C, Li J, Sun J, Fabbri M, Wayne A, et al. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 2017;6:1294368 pubmed 出版商
  70. Tamada H, Kiryu Seo S, Hosokawa H, Ohta K, Ishihara N, Nomura M, et al. Three-dimensional analysis of somatic mitochondrial dynamics in fission-deficient injured motor neurons using FIB/SEM. J Comp Neurol. 2017;525:2535-2548 pubmed 出版商
  71. Patil M, Sharma B, Elattar S, Chang J, Kapil S, Yuan J, et al. Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning. Diabetes. 2017;66:1611-1625 pubmed 出版商
  72. Møller A, Kampmann U, Hedegaard J, Thorsen K, Nordentoft I, Vendelbo M, et al. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep. 2017;7:43775 pubmed 出版商
  73. Williams P, Harder J, Foxworth N, Cochran K, Philip V, Porciatti V, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355:756-760 pubmed 出版商
  74. Nakajima H, Itakura M, Kubo T, Kaneshige A, Harada N, Izawa T, et al. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death. J Biol Chem. 2017;292:4727-4742 pubmed 出版商
  75. Matsuno Y, Onuma A, Fujioka Y, Yasuhara K, Fujii W, Naito K, et al. Effects of exosome-like vesicles on cumulus expansion in pigs in vitro. J Reprod Dev. 2017;63:51-58 pubmed 出版商
  76. Dadson K, Hauck L, Hao Z, Grothe D, Rao V, Mak T, et al. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1. Sci Rep. 2017;7:41490 pubmed 出版商
  77. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  78. Guo J, Kim N, Cui X. Inhibition of Fatty Acid Synthase Reduces Blastocyst Hatching through Regulation of the AKT Pathway in Pigs. PLoS ONE. 2017;12:e0170624 pubmed 出版商
  79. Kim T, Terentyeva R, Roder K, Li W, Liu M, Greener I, et al. SK channel enhancers attenuate Ca2+-dependent arrhythmia in hypertrophic hearts by regulating mito-ROS-dependent oxidation and activity of RyR. Cardiovasc Res. 2017;113:343-353 pubmed 出版商
  80. Scott N, Rogers L, Prudova A, Brown N, Fortelny N, Overall C, et al. Interactome disassembly during apoptosis occurs independent of caspase cleavage. Mol Syst Biol. 2017;13:906 pubmed 出版商
  81. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  82. Hu N, Chang H, Du B, Zhang Q, Arfat Y, Dang K, et al. Tetramethylpyrazine ameliorated disuse-induced gastrocnemius muscle atrophy in hindlimb unloading rats through suppression of Ca2+/ROS-mediated apoptosis. Appl Physiol Nutr Metab. 2017;42:117-127 pubmed 出版商
  83. Newman L, Schiavon C, Kahn R. Plasmids for variable expression of proteins targeted to the mitochondrial matrix or intermembrane space. Cell Logist. 2016;6:e1247939 pubmed 出版商
  84. Xiao F, Zhang J, Zhang C, An W. Hepatic stimulator substance inhibits calcium overflow through the mitochondria-associated membrane compartment during nonalcoholic steatohepatitis. Lab Invest. 2017;97:289-301 pubmed 出版商
  85. Wang X, Wang L, Sun Y, Li R, Deng J, Deng J. DNA methylation and histone deacetylation regulating insulin sensitivity due to chronic cold exposure. Cryobiology. 2017;74:36-42 pubmed 出版商
  86. Lim S, Hwang S, Yu J, Lim J, Kim H. Lycopene inhibits regulator of calcineurin 1-mediated apoptosis by reducing oxidative stress and down-regulating Nucling in neuronal cells. Mol Nutr Food Res. 2017;61: pubmed 出版商
  87. Seo B, Min K, Woo S, Choe M, Choi K, Lee Y, et al. Inhibition of Cathepsin S Induces Mitochondrial ROS That Sensitizes TRAIL-Mediated Apoptosis Through p53-Mediated Downregulation of Bcl-2 and c-FLIP. Antioxid Redox Signal. 2017;27:215-233 pubmed 出版商
  88. Park S, Jwa E, Shin S, Ju E, Park I, Pak J, et al. Ibulocydine sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis via calpain-mediated Bax cleavage. Int J Biochem Cell Biol. 2017;83:47-55 pubmed 出版商
  89. Wang S, Jacquemyn J, Murru S, Martinelli P, Barth E, Langer T, et al. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying. PLoS Genet. 2016;12:e1006463 pubmed 出版商
  90. Zou T, Chen D, Yang Q, Wang B, Zhu M, Nathanielsz P, et al. Resveratrol supplementation of high-fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. J Physiol. 2017;595:1547-1562 pubmed 出版商
  91. Kitsati N, Mantzaris M, Galaris D. Hydroxytyrosol inhibits hydrogen peroxide-induced apoptotic signaling via labile iron chelation. Redox Biol. 2016;10:233-242 pubmed 出版商
  92. Barreto R, Mandili G, Witzmann F, Novelli F, Zimmers T, Bonetto A. Cancer and Chemotherapy Contribute to Muscle Loss by Activating Common Signaling Pathways. Front Physiol. 2016;7:472 pubmed
  93. Lee J, Westrate L, Wu H, Page C, Voeltz G. Multiple dynamin family members collaborate to drive mitochondrial division. Nature. 2016;540:139-143 pubmed 出版商
  94. Tu S, Lin Y, Huang C, Yang P, Chang H, Chang C, et al. Protein phosphatase Mg2+/Mn2+ dependent 1F promotes smoking-induced breast cancer by inactivating phosphorylated-p53-induced signals. Oncotarget. 2016;7:77516-77531 pubmed 出版商
  95. Arora R, Sawney S, Saini V, Steffi C, Tiwari M, Saluja D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer. 2016;15:64 pubmed
  96. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  97. Van Damme P, Kalvik T, Starheim K, Jonckheere V, Myklebust L, Menschaert G, et al. A Role for Human N-alpha Acetyltransferase 30 (Naa30) in Maintaining Mitochondrial Integrity. Mol Cell Proteomics. 2016;15:3361-3372 pubmed
  98. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  99. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  100. Zhao G, Zhu P, Renvoisé B, Maldonado Baez L, Park S, Blackstone C. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res. 2016;349:32-44 pubmed 出版商
  101. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  102. Lauritzen K, Hasan Olive M, Regnell C, Kleppa L, Scheibye Knudsen M, Gjedde A, et al. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging. 2016;48:34-47 pubmed 出版商
  103. Ranjan K, Pathak C. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death. Mol Cell Biochem. 2016;422:135-150 pubmed
  104. Kang Y, Baker M, Liem M, Louber J, McKenzie M, Atukorala I, et al. Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. elife. 2016;5: pubmed 出版商
  105. Yan S, Du F, Wu L, Zhang Z, Zhong C, Yu Q, et al. F1F0 ATP Synthase-Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline. Diabetes. 2016;65:3482-3494 pubmed
  106. Pourcelot M, Zemirli N, Silva da Costa L, Loyant R, Garcin D, Vitour D, et al. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol. 2016;14:69 pubmed 出版商
  107. Snider N, Portney D, Willcockson H, Maitra D, Martin H, Greenson J, et al. Ethanol and Acetaminophen Synergistically Induce Hepatic Aggregation and TCH346-Insensitive Nuclear Translocation of GAPDH. PLoS ONE. 2016;11:e0160982 pubmed 出版商
  108. Welchen E, Schmitz J, Fuchs P, Garcia L, Wagner S, Wienstroer J, et al. d-Lactate Dehydrogenase Links Methylglyoxal Degradation and Electron Transport through Cytochrome c. Plant Physiol. 2016;172:901-912 pubmed
  109. Yim N, Ryu S, Choi K, Lee K, Lee S, Choi H, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat Commun. 2016;7:12277 pubmed 出版商
  110. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  111. Sun Z, Zhan L, Liang L, Sui H, Zheng L, Sun X, et al. ZiBu PiYin recipe prevents diabetes-associated cognitive decline in rats: possible involvement of ameliorating mitochondrial dysfunction, insulin resistance pathway and histopathological changes. BMC Complement Altern Med. 2016;16:200 pubmed 出版商
  112. Zhang X, Ling Y, Guo Y, Bai Y, Shi X, Gong F, et al. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria. Cell Death Dis. 2016;7:e2292 pubmed 出版商
  113. Wang H, Tri Anggraini F, Chen X, DeGracia D. Embryonic lethal abnormal vision proteins and adenine and uridine-rich element mRNAs after global cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab. 2017;37:1494-1507 pubmed 出版商
  114. Cesnekova J, Spáčilová J, Hansikova H, Houstek J, Zeman J, Stiburek L. LACE1 interacts with p53 and mediates its mitochondrial translocation and apoptosis. Oncotarget. 2016;7:47687-47698 pubmed 出版商
  115. Akabane S, Matsuzaki K, Yamashita S, Arai K, Okatsu K, Kanki T, et al. Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy. J Biol Chem. 2016;291:16162-74 pubmed 出版商
  116. Ding G, Zhao J, Jiang D. Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and CREB/ERK signaling in osteoblast cells. Exp Ther Med. 2016;11:2553-2560 pubmed
  117. Zhao X, Wang J, Xiao L, Xu Q, Zhao E, Zheng X, et al. Effects of 17-AAG on the cell cycle and apoptosis of H446 cells and the associated mechanisms. Mol Med Rep. 2016;14:1067-74 pubmed 出版商
  118. Moschoi R, Imbert V, Nebout M, Chiche J, Mary D, Prebet T, et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood. 2016;128:253-64 pubmed 出版商
  119. Liu Q, Xu C, Ji G, Liu H, Mo Y, Tollerud D, et al. Sublethal effects of zinc oxide nanoparticles on male reproductive cells. Toxicol In Vitro. 2016;35:131-8 pubmed 出版商
  120. Qi J, Li T, Bian H, Li F, Ju Y, Gao S, et al. SNAI1 promotes the development of HCC through the enhancement of proliferation and inhibition of apoptosis. FEBS Open Bio. 2016;6:326-37 pubmed 出版商
  121. Marescotti D, Gonzalez Suarez I, Acali S, Johne S, Laurent A, Frentzel S, et al. High Content Screening Analysis to Evaluate the Toxicological Effects of Harmful and Potentially Harmful Constituents (HPHC). J Vis Exp. 2016;: pubmed 出版商
  122. Megyesi J, Tarcsafalvi A, Seng N, Hodeify R, Price P. Cdk2 phosphorylation of Bcl-xL after stress converts it to a pro-apoptotic protein mimicking Bax/Bak. Cell Death Discov. 2016;2: pubmed
  123. Kumari S, Mehta S, Milledge G, Huang X, Li H, Li P. Ubisol-Q10 Prevents Glutamate-Induced Cell Death by Blocking Mitochondrial Fragmentation and Permeability Transition Pore Opening. Int J Biol Sci. 2016;12:688-700 pubmed 出版商
  124. Hu Z, Lv G, Li Y, Li E, Li H, Zhou Q, et al. Enhancement of anti-tumor effects of 5-fluorouracil on hepatocellular carcinoma by low-intensity ultrasound. J Exp Clin Cancer Res. 2016;35:71 pubmed 出版商
  125. Pallis M, Burrows F, Ryan J, Grundy M, Seedhouse C, Abdul Aziz A, et al. Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget. 2017;8:16220-16232 pubmed 出版商
  126. Molla B, Riveiro F, Bolinches Amorós A, Muñoz Lasso D, Palau F, Gonzalez Cabo P. Two different pathogenic mechanisms, dying-back axonal neuropathy and pancreatic senescence, are present in the YG8R mouse model of Friedreich's ataxia. Dis Model Mech. 2016;9:647-57 pubmed 出版商
  127. Zhuang H, Tian W, Li W, Zhang X, Wang J, Yang Y, et al. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury. Int J Mol Sci. 2016;17:515 pubmed 出版商
  128. Zhang Y, Chen Y, Gucek M, Xu H. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication. EMBO J. 2016;35:1045-57 pubmed 出版商
  129. Oettinghaus B, D Alonzo D, Barbieri E, Restelli L, Savoia C, Licci M, et al. DRP1-dependent apoptotic mitochondrial fission occurs independently of BAX, BAK and APAF1 to amplify cell death by BID and oxidative stress. Biochim Biophys Acta. 2016;1857:1267-1276 pubmed 出版商
  130. Chaudhuri D, Artiga D, Abiria S, Clapham D. Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition. Proc Natl Acad Sci U S A. 2016;113:E1872-80 pubmed 出版商
  131. Ranjan K, Pathak C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Sci Rep. 2016;6:22787 pubmed 出版商
  132. Zhao Y, Xu L, Qiao Z, Gao L, Ding S, Ying X, et al. YiXin-Shu, a ShengMai-San-based traditional Chinese medicine formula, attenuates myocardial ischemia/reperfusion injury by suppressing mitochondrial mediated apoptosis and upregulating liver-X-receptor α. Sci Rep. 2016;6:23025 pubmed 出版商
  133. Martínez Pizarro A, Desviat L, Ugarte M, Perez B, Richard E. Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects. PLoS ONE. 2016;11:e0150357 pubmed 出版商
  134. Antony A, Paillard M, Moffat C, Juskeviciute E, Correnti J, Bolon B, et al. MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration. Nat Commun. 2016;7:10955 pubmed 出版商
  135. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  136. Viana Huete V, Guillen C, García Aguilar A, García G, Fernandez S, Kahn C, et al. Essential Role of IGFIR in the Onset of Male Brown Fat Thermogenic Function: Regulation of Glucose Homeostasis by Differential Organ-Specific Insulin Sensitivity. Endocrinology. 2016;157:1495-511 pubmed 出版商
  137. Roque C, Wong H, Lin J, Holt C. Tumor protein Tctp regulates axon development in the embryonic visual system. Development. 2016;143:1134-48 pubmed 出版商
  138. Gao S, Chen X, Jin H, Ren S, Liu Z, Fang X, et al. Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane. Oncol Lett. 2016;11:1567-1573 pubmed
  139. Liu Z, Gan L, Chen Y, Luo D, Zhang Z, Cao W, et al. Mark4 promotes oxidative stress and inflammation via binding to PPARγ and activating NF-κB pathway in mice adipocytes. Sci Rep. 2016;6:21382 pubmed 出版商
  140. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed 出版商
  141. Zhang Y, Zou C, Yang S, Fu J. P120 catenin attenuates the angiotensin II-induced apoptosis of human umbilical vein endothelial cells by suppressing the mitochondrial pathway. Int J Mol Med. 2016;37:623-30 pubmed 出版商
  142. He Y, Luan Z, Fu X, Xu X. Overexpression of uncoupling protein 2 inhibits the high glucose-induced apoptosis of human umbilical vein endothelial cells. Int J Mol Med. 2016;37:631-8 pubmed 出版商
  143. Lopez J, Bessou M, Riley J, Giampazolias E, Todt F, Rochegüe T, et al. Mito-priming as a method to engineer Bcl-2 addiction. Nat Commun. 2016;7:10538 pubmed 出版商
  144. Wang G, Fu L, Chen F. Study of the mechanism underlying the inhibitory effects of transglutaminase II on apoptosis in the osteosarcoma MG-63 cell line under hypoxic conditions. Oncol Lett. 2015;10:3425-3428 pubmed
  145. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  146. Bertoldo M, Guibert E, Faure M, Guillou F, Ramé C, Nadal Desbarats L, et al. Specific deletion of AMP-activated protein kinase (α1AMPK) in mouse Sertoli cells modifies germ cell quality. Mol Cell Endocrinol. 2016;423:96-112 pubmed 出版商
  147. Cousin F, Jouan Lanhouet S, Théret N, Brenner C, Jouan E, Le Moigne Muller G, et al. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget. 2016;7:7161-78 pubmed 出版商
  148. Cloonan S, Glass K, Laucho Contreras M, Bhashyam A, Cervo M, Pabón M, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016;22:163-74 pubmed 出版商
  149. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  150. Xu Y, Wu D, Zheng W, Yu F, Yang F, Yao Y, et al. Proteome profiling of cadmium-induced apoptosis by antibody array analyses in human bronchial epithelial cells. Oncotarget. 2016;7:6146-58 pubmed 出版商
  151. Galal A, El Bakly W, Al Haleem E, El Demerdash E. Selective A3 adenosine receptor agonist protects against doxorubicin-induced cardiotoxicity. Cancer Chemother Pharmacol. 2016;77:309-22 pubmed 出版商
  152. Gali Ramamoorthy T, Laverny G, Schlagowski A, Zoll J, Messaddeq N, Bornert J, et al. The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles. Nat Commun. 2015;6:10210 pubmed 出版商
  153. Chiu C, Chou H, Chen B, Chang K, Tseng C, Fong Y, et al. BPIQ, a novel synthetic quinoline derivative, inhibits growth and induces mitochondrial apoptosis of lung cancer cells in vitro and in zebrafish xenograft model. BMC Cancer. 2015;15:962 pubmed 出版商
  154. Sharma P, Banerjee R, Narayan K. Mineralocorticoid receptor mediated liposomal delivery system for targeted induction of apoptosis in cancer cells. Biochim Biophys Acta. 2016;1858:415-21 pubmed 出版商
  155. Gatticchi L, Bellezza I, Del Sordo R, Peirce M, Sidoni A, Roberti R, et al. The Tm7sf2 Gene Deficiency Protects Mice against Endotoxin-Induced Acute Kidney Injury. PLoS ONE. 2015;10:e0141885 pubmed 出版商
  156. Stanojlović M, GuÅ¡evac I, Grković I, Zlatković J, Mitrović N, Zarić M, et al. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus. Neuroscience. 2015;311:308-21 pubmed 出版商
  157. Yue J, Ben Messaoud N, López J. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid. J Biol Chem. 2015;290:30375-89 pubmed 出版商
  158. Lauková J, Kozubík A, Hofmanová J, Nekvindová J, Sova P, Moyer M, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS ONE. 2015;10:e0141020 pubmed 出版商
  159. Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654-68 pubmed 出版商
  160. Guo W, Zhang Y, Ling Z, Liu X, Zhao X, Yuan Z, et al. Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner. Cell Death Dis. 2015;6:e1919 pubmed 出版商
  161. Mahran Y, El Demerdash E, Nada A, El Naga R, Ali A, Abdel Naim A. Growth Hormone Ameliorates the Radiotherapy-Induced Ovarian Follicular Loss in Rats: Impact on Oxidative Stress, Apoptosis and IGF-1/IGF-1R Axis. PLoS ONE. 2015;10:e0140055 pubmed 出版商
  162. Mattiolo P, Yuste V, Boix J, Ribas J. Autophagy exacerbates caspase-dependent apoptotic cell death after short times of starvation. Biochem Pharmacol. 2015;98:573-86 pubmed 出版商
  163. Ambroise G, Portier A, Roders N, Arnoult D, Vazquez A. Subcellular localization of PUMA regulates its pro-apoptotic activity in Burkitt's lymphoma B cells. Oncotarget. 2015;6:38181-94 pubmed 出版商
  164. Fentz J, Kjøbsted R, Kristensen C, Hingst J, Birk J, Gudiksen A, et al. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle. Am J Physiol Endocrinol Metab. 2015;309:E900-14 pubmed 出版商
  165. Naghdi S, Várnai P, Hajnóczky G. Motifs of VDAC2 required for mitochondrial Bak import and tBid-induced apoptosis. Proc Natl Acad Sci U S A. 2015;112:E5590-9 pubmed 出版商
  166. Kharaziha P, Chioureas D, Baltatzis G, Fonseca P, Rodriguez P, Gogvadze V, et al. Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget. 2015;6:37066-82 pubmed 出版商
  167. Geng J, Sun X, Wang P, Zhang S, Wang X, Wu H, et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015;16:1142-52 pubmed 出版商
  168. Matsuda S, Adachi J, Ihara M, Tanuma N, Shima H, Kakizuka A, et al. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res. 2016;44:636-47 pubmed 出版商
  169. Sharma P, Abbasi C, Lazic S, Teng A, Wang D, Dubois N, et al. Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function. Nat Commun. 2015;6:8391 pubmed 出版商
  170. Zhou H, Forveille S, Sauvat A, Sica V, Izzo V, Durand S, et al. The oncolytic peptide LTX-315 kills cancer cells through Bax/Bak-regulated mitochondrial membrane permeabilization. Oncotarget. 2015;6:26599-614 pubmed 出版商
  171. Zhu X, Wang K, Zhang K, Tan X, Wu Z, Sun S, et al. Tetramethylpyrazine Protects Retinal Capillary Endothelial Cells (TR-iBRB2) against IL-1β-Induced Nitrative/Oxidative Stress. Int J Mol Sci. 2015;16:21775-90 pubmed 出版商
  172. Stefano G, Mantione K, Capellan L, Casares F, Challenger S, Ramin R, et al. Morphine stimulates nitric oxide release in human mitochondria. J Bioenerg Biomembr. 2015;47:409-17 pubmed 出版商
  173. Yapislar H, Taşkın E, Ozdas S, Akin D, Sonmez E. Counteraction of Apoptotic and Inflammatory Effects of Adriamycin in the Liver Cell Culture by Clinopitolite. Biol Trace Elem Res. 2016;170:373-81 pubmed 出版商
  174. Angliker N, Burri M, Zaichuk M, Fritschy J, Rüegg M. mTORC1 and mTORC2 have largely distinct functions in Purkinje cells. Eur J Neurosci. 2015;42:2595-612 pubmed 出版商
  175. Sereni F, Dal Monte M, Filippi L, Bagnoli P. Role of host β1- and β2-adrenergic receptors in a murine model of B16 melanoma: functional involvement of β3-adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:1317-31 pubmed 出版商
  176. Lee S, Kim J, Hong S, Lee A, Park E, Seo H, et al. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer. PLoS ONE. 2015;10:e0135582 pubmed 出版商
  177. Hwang S, Disatnik M, Mochly Rosen D. Impaired GAPDH-induced mitophagy contributes to the pathology of Huntington's disease. EMBO Mol Med. 2015;7:1307-26 pubmed 出版商
  178. Nagaoka K, Matoba T, Mao Y, Nakano Y, Ikeda G, Egusa S, et al. A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model. PLoS ONE. 2015;10:e0132451 pubmed 出版商
  179. Srinivasan S, Guha M, Dong D, Whelan K, Ruthel G, Uchikado Y, et al. Disruption of cytochrome c oxidase function induces the Warburg effect and metabolic reprogramming. Oncogene. 2016;35:1585-95 pubmed 出版商
  180. Wu C, Huang K, Yang T, Li Y, Wen C, Hsu S, et al. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2015;10:e0132052 pubmed 出版商
  181. Hamacher Brady A, Brady N. Bax/Bak-dependent, Drp1-independent Targeting of X-linked Inhibitor of Apoptosis Protein (XIAP) into Inner Mitochondrial Compartments Counteracts Smac/DIABLO-dependent Effector Caspase Activation. J Biol Chem. 2015;290:22005-18 pubmed 出版商
  182. Liu K, Chuang S, Long C, Lee Y, Wang C, Lu M, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol. 2015;309:F318-31 pubmed 出版商
  183. Eling N, Reuter L, Hazin J, Hamacher Brady A, Brady N. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015;2:517-32 pubmed
  184. Liu G, Wang Z, Wang Z, Yang D, Liu Z, Wang L. Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol. 2016;90:1193-209 pubmed 出版商
  185. Huang C, Lee C, Lin H, Chen M, Lin C, Chang J. Autophagy-Regulated ROS from Xanthine Oxidase Acts as an Early Effector for Triggering Late Mitochondria-Dependent Apoptosis in Cathepsin S-Targeted Tumor Cells. PLoS ONE. 2015;10:e0128045 pubmed 出版商
  186. Chen C, Kim K, Lau L. The matricellular protein CCN1 suppresses hepatocarcinogenesis by inhibiting compensatory proliferation. Oncogene. 2016;35:1314-23 pubmed 出版商
  187. Loureiro R, Magalhães Novais S, Mesquita K, Baldeiras I, Sousa I, Tavares L, et al. Melatonin antiproliferative effects require active mitochondrial function in embryonal carcinoma cells. Oncotarget. 2015;6:17081-96 pubmed
  188. Winter L, Kuznetsov A, Grimm M, Zeöld A, Fischer I, Wiche G. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle. Hum Mol Genet. 2015;24:4530-44 pubmed 出版商
  189. Nagata T, Yasukawa H, Kyogoku S, Oba T, Takahashi J, Nohara S, et al. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules. PLoS ONE. 2015;10:e0127942 pubmed 出版商
  190. Coudé M, Braun T, Berrou J, Dupont M, Bertrand S, Massé A, et al. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget. 2015;6:17698-712 pubmed
  191. Dai W, Wang F, Lu J, Xia Y, He L, Chen K, et al. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget. 2015;6:13703-17 pubmed
  192. Yang N, Gilman P, Mirzayans R, Sun X, Touret N, Weinfeld M, et al. Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound. PLoS ONE. 2015;10:e0125381 pubmed 出版商
  193. Luo X, Fan Y, Park I, He J. Exosomes are unlikely involved in intercellular Nef transfer. PLoS ONE. 2015;10:e0124436 pubmed 出版商
  194. Teixeira F, Sanchez C, Hurd T, Seifert J, Czech B, Preall J, et al. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat Cell Biol. 2015;17:689-96 pubmed 出版商
  195. Fan S, Liu B, Sun L, Lv X, Lin Z, Chen W, et al. Mitochondrial fission determines cisplatin sensitivity in tongue squamous cell carcinoma through the BRCA1-miR-593-5p-MFF axis. Oncotarget. 2015;6:14885-904 pubmed
  196. Moreira J, Wohlwend M, Alves M, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med. 2015;13:76 pubmed 出版商
  197. Hotokezaka Y, Katayama I, van Leyen K, Nakamura T. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses. Cell Death Dis. 2015;6:e1719 pubmed 出版商
  198. Ben Messaoud N, Yue J, Valent D, Katzarova I, López J. Osmostress-induced apoptosis in Xenopus oocytes: role of stress protein kinases, calpains and Smac/DIABLO. PLoS ONE. 2015;10:e0124482 pubmed 出版商
  199. Brandauer J, Andersen M, Kellezi H, Risis S, Frøsig C, Vienberg S, et al. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Front Physiol. 2015;6:85 pubmed 出版商
  200. Kao Y, Chang B, Liang J, Tsai H, Lee Y, Lin R, et al. Japanese encephalitis virus nonstructural protein NS5 interacts with mitochondrial trifunctional protein and impairs fatty acid β-oxidation. PLoS Pathog. 2015;11:e1004750 pubmed 出版商
  201. Hu S, Danilov A, Godek K, Orr B, Tafe L, Rodriguez Canales J, et al. CDK2 Inhibition Causes Anaphase Catastrophe in Lung Cancer through the Centrosomal Protein CP110. Cancer Res. 2015;75:2029-38 pubmed 出版商
  202. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  203. Schüll S, Günther S, Brodesser S, Seeger J, Tosetti B, Wiegmann K, et al. Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6. Cell Death Dis. 2015;6:e1691 pubmed 出版商
  204. Boppana N, Stochaj U, Kodiha M, Bielawska A, Bielawski J, Pierce J, et al. Enhanced killing of SCC17B human head and neck squamous cell carcinoma cells after photodynamic therapy plus fenretinide via the de novo sphingolipid biosynthesis pathway and apoptosis. Int J Oncol. 2015;46:2003-10 pubmed 出版商
  205. Rayavarapu R, Heiden B, Pagani N, Shaw M, Shuff S, Zhang S, et al. The role of multicellular aggregation in the survival of ErbB2-positive breast cancer cells during extracellular matrix detachment. J Biol Chem. 2015;290:8722-33 pubmed 出版商
  206. Han M, Woo S, Min K, Kim S, Park J, Kim D, et al. 6-Shogaol enhances renal carcinoma Caki cells to TRAIL-induced apoptosis through reactive oxygen species-mediated cytochrome c release and down-regulation of c-FLIP(L) expression. Chem Biol Interact. 2015;228:69-78 pubmed 出版商
  207. Li G, Zhou J, Budhraja A, Hu X, Chen Y, Cheng Q, et al. Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis. Oncotarget. 2015;6:1834-49 pubmed
  208. Bertolin G, Jacoupy M, Traver S, Ferrando Miguel R, Saint Georges T, Grenier K, et al. Parkin maintains mitochondrial levels of the protective Parkinson's disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10. Cell Death Differ. 2015;22:1563-76 pubmed 出版商
  209. Sanderson T, Raghunayakula S, Kumar R. Release of mitochondrial Opa1 following oxidative stress in HT22 cells. Mol Cell Neurosci. 2015;64:116-22 pubmed 出版商
  210. Zhou L, Park S, Xu L, Xia X, Ye J, Su L, et al. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun. 2015;6:5949 pubmed 出版商
  211. van Bergeijk P, Adrian M, Hoogenraad C, Kapitein L. Optogenetic control of organelle transport and positioning. Nature. 2015;518:111-114 pubmed 出版商
  212. Zheng H, Fu J, Xue P, Zhao R, Dong J, Liu D, et al. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion. Antioxid Redox Signal. 2015;22:819-31 pubmed 出版商
  213. Bharti S, Rani N, Bhatia J, Arya D. 5-HT2B receptor blockade attenuates β-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs. Apoptosis. 2015;20:455-65 pubmed 出版商
  214. Ito H, Fujita K, Tagawa K, Chen X, Homma H, Sasabe T, et al. HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice. EMBO Mol Med. 2015;7:78-101 pubmed 出版商
  215. Ma H, Yue X, Gao L, Liang X, Yan W, Zhang Z, et al. ZHX2 enhances the cytotoxicity of chemotherapeutic drugs in liver tumor cells by repressing MDR1 via interfering with NF-YA. Oncotarget. 2015;6:1049-63 pubmed
  216. Cho S, Cho M, Kim J, Kaeberlein M, Lee S, Suh Y. Syringaresinol protects against hypoxia/reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF-1α in a FOXO3-dependent mechanism. Oncotarget. 2015;6:43-55 pubmed
  217. Chen G, Cheng X, Zhao M, Lin S, Lu J, Kang J, et al. RIP1-dependent Bid cleavage mediates TNFα-induced but Caspase-3-independent cell death in L929 fibroblastoma cells. Apoptosis. 2015;20:92-109 pubmed 出版商
  218. Nie C, Luo Y, Zhao X, Luo N, Tong A, Liu X, et al. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis. Cell Death Dis. 2014;5:e1495 pubmed 出版商
  219. Stacchiotti A, Favero G, Giugno L, Lavazza A, Reiter R, Rodella L, et al. Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protective role of melatonin. PLoS ONE. 2014;9:e111141 pubmed 出版商
  220. Vega Naredo I, Cunha Oliveira T, Serafim T, Sardao V, Oliveira P. Analysis of pro-apoptotic protein trafficking to and from mitochondria. Methods Mol Biol. 2015;1241:163-80 pubmed 出版商
  221. Lee J, Kapur M, Li M, Choi M, Choi S, Kim H, et al. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J Cell Sci. 2014;127:4954-63 pubmed 出版商
  222. Shi R, Zhu S, Li V, Gibson S, Xu X, Kong J. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther. 2014;20:1045-55 pubmed 出版商
  223. Hu Z, Zeng Q, Zhang B, Liu H, Wang W. Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells. Biochimie. 2014;107 Pt B:257-62 pubmed 出版商
  224. Geserick P, Wang J, Feoktistova M, Leverkus M. The ratio of Mcl-1 and Noxa determines ABT737 resistance in squamous cell carcinoma of the skin. Cell Death Dis. 2014;5:e1412 pubmed 出版商
  225. Niu H, Rikihisa Y. Investigating interference with apoptosis induction by bacterial proteins. Methods Mol Biol. 2014;1197:169-84 pubmed 出版商
  226. White A, Philp A, Fridolfsson H, Schilling J, Murphy A, Hamilton D, et al. High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. Am J Physiol Endocrinol Metab. 2014;307:E764-72 pubmed 出版商
  227. Passaro C, Volpe M, Botta G, Scamardella E, Perruolo G, Gillespie D, et al. PARP inhibitor olaparib increases the oncolytic activity of dl922-947 in in vitro and in vivo model of anaplastic thyroid carcinoma. Mol Oncol. 2015;9:78-92 pubmed 出版商
  228. Xu R, Hu Q, Ma Q, Liu C, Wang G. The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway. Cell Death Dis. 2014;5:e1373 pubmed 出版商
  229. Burman J, Itsara L, Kayser E, Suthammarak W, Wang A, Kaeberlein M, et al. A Drosophila model of mitochondrial disease caused by a complex I mutation that uncouples proton pumping from electron transfer. Dis Model Mech. 2014;7:1165-74 pubmed 出版商
  230. Sabirzhanov B, Zhao Z, Stoica B, Loane D, Wu J, Borroto C, et al. Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J Neurosci. 2014;34:10055-71 pubmed 出版商
  231. Morita A, Ariyasu S, Wang B, Asanuma T, Onoda T, Sawa A, et al. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation. Biochem Biophys Res Commun. 2014;450:1498-504 pubmed 出版商
  232. Kim T, Kim J, Kim Z, Huang R, Chae Y, Wang R. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive ox. BMC Complement Altern Med. 2014;14:236 pubmed 出版商
  233. Bai L, Chen J, McEachern D, Liu L, Zhou H, Aguilar A, et al. BM-1197: a novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS ONE. 2014;9:e99404 pubmed 出版商
  234. Thomas R, Andrews L, Burman J, Lin W, Pallanck L. PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet. 2014;10:e1004279 pubmed 出版商
  235. Sun R, Wang X, Liu Y, Xia M. Dietary supplementation with fish oil alters the expression levels of proteins governing mitochondrial dynamics and prevents high-fat diet-induced endothelial dysfunction. Br J Nutr. 2014;112:145-53 pubmed 出版商
  236. Hachani R, Dab H, Feriani A, Saber S, Sakly M, Vicaut E, et al. Hypercholesterolemic diet induces vascular smooth muscle cell apoptosis in sympathectomized rats via intrinsic pathway. Auton Neurosci. 2014;183:49-57 pubmed 出版商
  237. Bhattacharyya S, Ghosh S, Sil P. Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri. PLoS ONE. 2014;9:e89026 pubmed 出版商
  238. Li W, Zhang X, Zhuang H, Chen H, Chen Y, Tian W, et al. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J Biol Chem. 2014;289:10691-701 pubmed 出版商
  239. Olesen J, Gliemann L, Biensø R, Schmidt J, Hellsten Y, Pilegaard H. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J Physiol. 2014;592:1873-86 pubmed 出版商
  240. Beaudoin M, Snook L, Arkell A, Stefanson A, Wan Z, Simpson J, et al. Novel effects of rosiglitazone on SMAD2 and SMAD3 signaling in white adipose tissue of diabetic rats. Obesity (Silver Spring). 2014;22:1632-42 pubmed 出版商
  241. Chen M, Zhang Y, Yu V, Chong Y, Yoshioka T, Ge R. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction. Cell Death Differ. 2014;21:797-810 pubmed 出版商
  242. Furuya N, Ikeda S, Sato S, Soma S, Ezaki J, Oliva Trejo J, et al. PARK2/Parkin-mediated mitochondrial clearance contributes to proteasome activation during slow-twitch muscle atrophy via NFE2L1 nuclear translocation. Autophagy. 2014;10:631-41 pubmed 出版商
  243. Wolff N, Ghio A, Garrick L, Garrick M, Zhao L, Fenton R, et al. Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J. 2014;28:2134-45 pubmed 出版商
  244. Wang C, Wang J, Liu Z, Ma X, Wang X, Jin H, et al. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis. 2014;35:1500-9 pubmed 出版商
  245. Mahajan I, Chen M, Muro I, Robertson J, Wright C, Bratton S. BH3-only protein BIM mediates heat shock-induced apoptosis. PLoS ONE. 2014;9:e84388 pubmed 出版商
  246. Tsuneki M, Madri J. CD44 regulation of endothelial cell proliferation and apoptosis via modulation of CD31 and VE-cadherin expression. J Biol Chem. 2014;289:5357-70 pubmed 出版商
  247. Yang W, Cheng Z, Dai H. Calcium concentration response to uterine ischemia: a comparison of uterine fibroid cells and adjacent normal myometrial cells. Eur J Obstet Gynecol Reprod Biol. 2014;174:123-7 pubmed 出版商
  248. Xavier J, Morgado A, Sola S, Rodrigues C. Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal. 2014;21:1009-24 pubmed 出版商
  249. Wang W, Wang Y, Chen H, Xing Y, Li F, Zhang Q, et al. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway. Nat Chem Biol. 2014;10:133-40 pubmed 出版商
  250. Landry M, Champagne C, Boulanger M, Jetté A, Fuchs M, Dziengelewski C, et al. A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases. J Biol Chem. 2014;289:2230-49 pubmed 出版商
  251. Clerc P, Ge S, Hwang H, Waddell J, Roelofs B, Karbowski M, et al. Drp1 is dispensable for apoptotic cytochrome c release in primed MCF10A and fibroblast cells but affects Bcl-2 antagonist-induced respiratory changes. Br J Pharmacol. 2014;171:1988-99 pubmed 出版商
  252. Tao L, Zhou X, Shen C, Liang C, Liu B, Tao Y, et al. Tetrandrine induces apoptosis and triggers a caspase cascade in U2-OS and MG-63 cells through the intrinsic and extrinsic pathways. Mol Med Rep. 2014;9:345-9 pubmed 出版商
  253. Killinger B, Shah M, Moszczynska A. Co-administration of betulinic acid and methamphetamine causes toxicity to dopaminergic and serotonergic nerve terminals in the striatum of late adolescent rats. J Neurochem. 2014;128:764-75 pubmed 出版商
  254. Jiang K, Ren C, Nair V. MicroRNA-137 represses Klf4 and Tbx3 during differentiation of mouse embryonic stem cells. Stem Cell Res. 2013;11:1299-313 pubmed 出版商
  255. Bartolomé A, López Herradón A, Portal Nuñez S, García Aguilar A, Esbrit P, Benito M, et al. Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function. Biochem J. 2013;455:329-37 pubmed 出版商
  256. Yoshioka H, Katsu M, Sakata H, Okami N, Wakai T, Kinouchi H, et al. The role of PARL and HtrA2 in striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab. 2013;33:1658-65 pubmed 出版商
  257. Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E, et al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem. 2013;288:20014-33 pubmed 出版商
  258. Mobasher M, Gonzalez Rodriguez A, Santamaria B, Ramos S, Martin M, Goya L, et al. Protein tyrosine phosphatase 1B modulates GSK3?/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Cell Death Dis. 2013;4:e626 pubmed 出版商
  259. Kristensen J, Larsen S, Helge J, Dela F, Wojtaszewski J. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice. PLoS ONE. 2013;8:e53533 pubmed 出版商
  260. Said R, Nada A, El Demerdash E. Sodium selenite improves folliculogenesis in radiation-induced ovarian failure: a mechanistic approach. PLoS ONE. 2012;7:e50928 pubmed 出版商
  261. Zhang H, Li J, Liang X, Luo Y, Zen K, Zhang C. Uncoupling protein 2 negatively regulates glucose-induced glucagon-like peptide 1 secretion. J Mol Endocrinol. 2012;48:151-8 pubmed 出版商
  262. Jung Y, Joo K, Seong D, Choi Y, Kong D, Kim Y, et al. Identification of prognostic biomarkers for glioblastomas using protein expression profiling. Int J Oncol. 2012;40:1122-32 pubmed 出版商
  263. Althoff T, Mills D, Popot J, Kuhlbrandt W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 2011;30:4652-64 pubmed 出版商
  264. Liu C, Chen C, Huang A, Li J. Subamolide A, a component isolated from Cinnamomum subavenium, induces apoptosis mediated by mitochondria-dependent, p53 and ERK1/2 pathways in human urothelial carcinoma cell line NTUB1. J Ethnopharmacol. 2011;137:503-11 pubmed 出版商
  265. Lauritzen K, Cheng C, Wiksen H, Bergersen L, Klungland A. Mitochondrial DNA toxicity compromises mitochondrial dynamics and induces hippocampal antioxidant defenses. DNA Repair (Amst). 2011;10:639-53 pubmed 出版商
  266. Guerrero Beltrán C, Calderon Oliver M, Martínez Abundis E, Tapia E, Zarco Márquez G, Zazueta C, et al. Protective effect of sulforaphane against cisplatin-induced mitochondrial alterations and impairment in the activity of NAD(P)H: quinone oxidoreductase 1 and ? glutamyl cysteine ligase: studies in mitochondria isolated from rat kidney and in LLC-PK1 . Toxicol Lett. 2010;199:80-92 pubmed 出版商
  267. Son J, Varadarajan S, Bratton S. TRAIL-activated stress kinases suppress apoptosis through transcriptional upregulation of MCL-1. Cell Death Differ. 2010;17:1288-301 pubmed 出版商
  268. Zucchini Pascal N, De Sousa G, Rahmani R. Lindane and cell death: at the crossroads between apoptosis, necrosis and autophagy. Toxicology. 2009;256:32-41 pubmed 出版商
  269. Rieger J, Lemke D, Maurer G, Weiler M, Frank B, Tabatabai G, et al. Enzastaurin-induced apoptosis in glioma cells is caspase-dependent and inhibited by BCL-XL. J Neurochem. 2008;106:2436-48 pubmed 出版商
  270. Wolff S, Erster S, Palacios G, Moll U. p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity. Cell Res. 2008;18:733-44 pubmed 出版商
  271. Abdelwahid E, Yokokura T, Krieser R, Balasundaram S, Fowle W, White K. Mitochondrial disruption in Drosophila apoptosis. Dev Cell. 2007;12:793-806 pubmed
  272. Martin Latil S, Mousson L, Autret A, Colbere Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol. 2007;81:4457-64 pubmed
  273. Tanaka S, Takehashi M, Iida S, Kitajima T, Kamanaka Y, Stedeford T, et al. Mitochondrial impairment induced by poly(ADP-ribose) polymerase-1 activation in cortical neurons after oxygen and glucose deprivation. J Neurochem. 2005;95:179-90 pubmed
  274. Trimmer P, Borland M, Keeney P, Bennett J, Parker W. Parkinson's disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem. 2004;88:800-12 pubmed
  275. Abarca Rojano E, Rosas Medina P, Zamudio Cortéz P, Mondragón Flores R, Sánchez García F. Mycobacterium tuberculosis virulence correlates with mitochondrial cytochrome c release in infected macrophages. Scand J Immunol. 2003;58:419-27 pubmed
  276. Wilkinson B, Elam J, Fadool D, Hyson R. Afferent regulation of cytochrome-c and active caspase-9 in the avian cochlear nucleus. Neuroscience. 2003;120:1071-9 pubmed
  277. Olichon A, Emorine L, Descoins E, Pelloquin L, Brichese L, Gas N, et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002;523:171-6 pubmed
  278. Tang D, Lahti J, Grenet J, Kidd V. Cycloheximide-induced T-cell death is mediated by a Fas-associated death domain-dependent mechanism. J Biol Chem. 1999;274:7245-52 pubmed