这是一篇来自已证抗体库的有关人类 CD28的综述,是根据178篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD28 抗体。
CD28 同义词: Tp44

赛默飞世尔
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 5 ug/ml; 图 7h
赛默飞世尔 CD28抗体(Thermo Fisher, 16-0289)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml (图 7h). J Exp Med (2022) ncbi
小鼠 单克隆(CD28.6)
  • 流式细胞仪; 小鼠
赛默飞世尔 CD28抗体(eBioscience, 16-0288-85)被用于被用于流式细胞仪在小鼠样本上. iScience (2022) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD28抗体(eBioscience, 48-0289-42)被用于被用于流式细胞仪在人类样本上 (图 3a). Immunity (2021) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 1s3a
赛默飞世尔 CD28抗体(eBioscience, 16-0289-81)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 1s3a). elife (2021) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CD28抗体(Invitrogen, CD28.1)被用于被用于流式细胞仪在人类样本上 (图 4). Aging Cell (2021) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 4a
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 4a). BMC Immunol (2020) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 5s1f, 5s1e
赛默飞世尔 CD28抗体(生活技术, LS17028941)被用于被用于流式细胞仪在人类样本上 (图 5s1f, 5s1e). elife (2019) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 2 ug/ml; 图 4a
赛默飞世尔 CD28抗体(eBioscience, 16-0289-85)被用于被用于抑制或激活实验在人类样本上浓度为2 ug/ml (图 4a). Diagn Pathol (2019) ncbi
小鼠 单克隆(CD28.2)
  • 免疫沉淀; 人类; 图 6f
赛默飞世尔 CD28抗体(Thermo Fisher, 16-0289-85)被用于被用于免疫沉淀在人类样本上 (图 6f). Cell Rep (2018) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CD28抗体(ebioscience, 16-0289-81)被用于被用于流式细胞仪在人类样本上 (图 3a). Oncotarget (2018) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 1 ug/ml; 图 2c
赛默飞世尔 CD28抗体(ebioscience, 16-0289)被用于被用于流式细胞仪在人类样本上浓度为1 ug/ml (图 2c). Cell Death Dis (2017) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 表 1
赛默飞世尔 CD28抗体(eBioscience, 16-0289-85)被用于被用于抑制或激活实验在人类样本上 (表 1). Cell (2017) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 小鼠; 图 6e
赛默飞世尔 CD28抗体(eBioscience, 16-0289-85)被用于被用于抑制或激活实验在小鼠样本上 (图 6e). Oncogene (2017) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 s9
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 s9). Nature (2017) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 s2). Oncoimmunology (2017) ncbi
小鼠 单克隆(CD28.6)
  • 免疫细胞化学; 人类; 表 1
赛默飞世尔 CD28抗体(eBioscience, 16-0288-81)被用于被用于免疫细胞化学在人类样本上 (表 1). J Vis Exp (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 6b
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 6b). Oncotarget (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 5c
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 5c). J Exp Med (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 6a
赛默飞世尔 CD28抗体(eBiosciences, 16-0289)被用于被用于抑制或激活实验在人类样本上 (图 6a). Mol Biol Cell (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 1
赛默飞世尔 CD28抗体(eBioscience, 16-0289)被用于被用于抑制或激活实验在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 s3a
赛默飞世尔 CD28抗体(eBiosciences, CD28.2)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 s3a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 1
赛默飞世尔 CD28抗体(eBioscience, 28.2)被用于被用于抑制或激活实验在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 8
赛默飞世尔 CD28抗体(eBioscience, 16-0289-85)被用于被用于抑制或激活实验在人类样本上 (图 8). J Exp Med (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴; 图 4
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在猕猴样本上 (图 4). J Virol (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 1
赛默飞世尔 CD28抗体(eBioscience, 16-0289-85)被用于被用于抑制或激活实验在人类样本上 (图 1). MAbs (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 6c
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 6c). Nat Immunol (2015) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 3
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于抑制或激活实验在人类样本上 (图 3). Cancer Immunol Res (2015) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 1 ug/ml
赛默飞世尔 CD28抗体(eBIoscience, CD28.2)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml. J Biol Chem (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于抑制或激活实验在人类样本上. J Autoimmun (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在人类样本上. Leukemia (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在人类样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在人类样本上. J Immunol Res (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 大鼠
赛默飞世尔 CD28抗体(eBioscience, 13-0289)被用于被用于流式细胞仪在大鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(CD28.6)
  • 中和反应; 人类
赛默飞世尔 CD28抗体(eBioscience, 16-0288)被用于被用于中和反应在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 1 ug/ml
赛默飞世尔 CD28抗体(Ebioscience, CD28.2)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml. PLoS ONE (2013) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在猕猴样本上. Virology (2013) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴; 图 2a
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在猕猴样本上 (图 2a). Hum Vaccin Immunother (2012) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于抑制或激活实验在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 S4A
赛默飞世尔 CD28抗体(eBioscience, 25-0289-42)被用于被用于流式细胞仪在人类样本上 (图 S4A). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(10F3)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 CD28抗体(Caltag, 10F3)被用于被用于流式细胞仪在小鼠样本上 (图 3). Blood (2010) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2009) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD28抗体(Caltag, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Immunol (2010) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
  • 流式细胞仪; 食蟹猴
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于流式细胞仪在猕猴样本上 和 被用于流式细胞仪在食蟹猴样本上. Eur J Immunol (2008) ncbi
小鼠 单克隆(10F3)
  • 抑制或激活实验; 人类
赛默飞世尔 CD28抗体(Invitrogen, 10F3)被用于被用于抑制或激活实验在人类样本上. Toxicol Appl Pharmacol (2008) ncbi
小鼠 单克隆(10F3)
  • 抑制或激活实验; 人类; 0.2 ug/ml; 图 3c
赛默飞世尔 CD28抗体(Caltag/Invitrogen, 10F3)被用于被用于抑制或激活实验在人类样本上浓度为0.2 ug/ml (图 3c). Gene Ther (2007) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于抑制或激活实验在人类样本上. J Immunol (2006) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
赛默飞世尔 CD28抗体(Caltag, CD28.2)被用于被用于流式细胞仪在猕猴样本上. Immunology (2006) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 0.1 ug/ml
赛默飞世尔 CD28抗体(eBioscience, CD28.2)被用于被用于抑制或激活实验在人类样本上浓度为0.1 ug/ml. J Immunol (2006) ncbi
小鼠 单克隆(CD28.6)
  • 抑制或激活实验; 人类; 15 ug/ml
赛默飞世尔 CD28抗体(eBioscience, CD28.6)被用于被用于抑制或激活实验在人类样本上浓度为15 ug/ml. J Immunol (2006) ncbi
BioLegend
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 2b). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(CD28.2)
  • mass cytometry; 人类; 图 s4a
BioLegend CD28抗体(Biolegend, 302937)被用于被用于mass cytometry在人类样本上 (图 s4a). Biomark Res (2022) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 5e
BioLegend CD28抗体(Biolegend, 302902)被用于被用于流式细胞仪在人类样本上 (图 5e). Cell (2021) ncbi
小鼠 单克隆(CD28.2)
  • mass cytometry; 人类; 1:50; 图 s2
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于mass cytometry在人类样本上浓度为1:50 (图 s2). Int J Mol Sci (2021) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 s3-3d
BioLegend CD28抗体(Biolegend, 302910)被用于被用于流式细胞仪在人类样本上 (图 s3-3d). elife (2020) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 1:50
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于流式细胞仪在人类样本上浓度为1:50. Sci Signal (2020) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 1b). Sci Rep (2019) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell Stem Cell (2019) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 1a
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于抑制或激活实验在人类样本上 (图 1a). Eur J Immunol (2018) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 s2e
BioLegend CD28抗体(BioLegend, 302920)被用于被用于流式细胞仪在人类样本上 (图 s2e). Cell (2018) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 5c
BioLegend CD28抗体(Biolegend, 28.2)被用于被用于流式细胞仪在人类样本上 (图 5c). J Immunol (2017) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 2c
BioLegend CD28抗体(Biolegend, 28.2)被用于被用于流式细胞仪在人类样本上 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(CD28.2)
  • mass cytometry; 人类; 图 2a
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 2c
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于抑制或激活实验在人类样本上 (图 2c). Oncotarget (2017) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于流式细胞仪在人类样本上. Cancer Res (2017) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 s1e
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 s1e). Immunity (2017) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴; 图 4b
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于流式细胞仪在猕猴样本上 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 s6b
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 s6b). PLoS Pathog (2017) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 s4a
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于抑制或激活实验在人类样本上 (图 s4a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴; 图 4a
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于流式细胞仪在猕猴样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于抑制或激活实验在人类样本上. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 s1
BioLegend CD28抗体(Biolegend, 28.2)被用于被用于流式细胞仪在人类样本上 (图 s1). PLoS Pathog (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 2b
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 2b). J Clin Invest (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 4
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol Res (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于抑制或激活实验在人类样本上. Cytotherapy (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 1
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 5 ug/ml; 图 s2
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于流式细胞仪在人类样本上浓度为5 ug/ml (图 s2). Anesthesiology (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 2
BioLegend CD28抗体(BioLegend, 302902)被用于被用于流式细胞仪在人类样本上 (图 2). Nat Biotechnol (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 1a
BioLegend CD28抗体(biolegend, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 3
BioLegend CD28抗体(BioLegend, 28.2)被用于被用于抑制或激活实验在人类样本上 (图 3). J Immunol Methods (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于抑制或激活实验在人类样本上. J Leukoc Biol (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 1
BioLegend CD28抗体(Biolegend, clone CD28.2)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
BioLegend CD28抗体(Biolegend, 302906)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 7
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于抑制或激活实验在人类样本上 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 表 2
BioLegend CD28抗体(BioLegend, 302934)被用于被用于抑制或激活实验在人类样本上 (表 2). Immunol Lett (2015) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 6
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于抑制或激活实验在人类样本上 (图 6). Cancer Res (2015) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于抑制或激活实验在人类样本上. Cell Signal (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 3
BioLegend CD28抗体(BioLegend, clone CD28.2)被用于被用于流式细胞仪在人类样本上 (图 3). Clin Immunol (2014) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于抑制或激活实验在人类样本上. Arch Immunol Ther Exp (Warsz) (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于流式细胞仪在猕猴样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 1 ug/ml
BioLegend CD28抗体(Biolegend, CD28.2)被用于被用于流式细胞仪在人类样本上浓度为1 ug/ml. Med Microbiol Immunol (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
BioLegend CD28抗体(BioLegend, CD28.2)被用于被用于流式细胞仪在猕猴样本上. PLoS ONE (2014) ncbi
美天旎
小鼠 单克隆(15E8)
  • 抑制或激活实验; 人类; 0.5 ug/ml; 图 2b
美天旎 CD28抗体(Miltenyi Biotec, 130-093-375)被用于被用于抑制或激活实验在人类样本上浓度为0.5 ug/ml (图 2b). PLoS ONE (2022) ncbi
小鼠 单克隆(15E8)
  • 抑制或激活实验; 人类; 1,000 ug/ml
美天旎 CD28抗体(Miltenyi Biotec, 130-093-375)被用于被用于抑制或激活实验在人类样本上浓度为1,000 ug/ml. Cell (2019) ncbi
Bio X Cell
小鼠 单克隆(CD28.2)
  • 免疫细胞化学; 人类; 图 3c
Bio X Cell CD28抗体(Bio X Cell, BE0291)被用于被用于免疫细胞化学在人类样本上 (图 3c). Immunity (2019) ncbi
小鼠 单克隆(9.3)
  • 抑制或激活实验; 人类; 图 3
Bio X Cell CD28抗体(BioXCell, 9.3)被用于被用于抑制或激活实验在人类样本上 (图 3). Eur J Immunol (2015) ncbi
小鼠 单克隆(9.3)
  • 抑制或激活实验; 人类; 图 3b
Bio X Cell CD28抗体(BioXCell, 9.3)被用于被用于抑制或激活实验在人类样本上 (图 3b). J Immunol (2015) ncbi
圣克鲁斯生物技术
仓鼠 单克隆(PV-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 CD28抗体(Santa Cruz Biotechnology, PV-1)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
艾博抗(上海)贸易有限公司
仓鼠 单克隆(PV-1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 CD28抗体(Abcam, ab25234)被用于被用于免疫印迹在人类样本上. Nat Commun (2015) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(CD28.2)
  • 流式细胞仪; African green monkey; 图 1a
  • 流式细胞仪; 猕猴; 图 1a
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman Coulter, 6607111)被用于被用于流式细胞仪在African green monkey样本上 (图 1a) 和 被用于流式细胞仪在猕猴样本上 (图 1a). J Clin Invest (2018) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴; 图 s8a
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman Coulter, CD28.2)被用于被用于流式细胞仪在猕猴样本上 (图 s8a). PLoS Pathog (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴; 图 2a
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman Coulter, CD28.2)被用于被用于流式细胞仪在猕猴样本上 (图 2a). J Immunol (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman Coulter, 6607111)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 2
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman-Coulter, IM1376)被用于被用于抑制或激活实验在人类样本上 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman Coulter, CD282)被用于被用于流式细胞仪在猕猴样本上. Clin Exp Immunol (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴; 图 4
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman Coulter, 28.2)被用于被用于流式细胞仪在猕猴样本上 (图 4). J Virol (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 0.2 ug/ml; 图 1
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman Coulter, CD28.2)被用于被用于流式细胞仪在人类样本上浓度为0.2 ug/ml (图 1). J Autoimmun (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 表 s5
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman Coulter, CD28.2)被用于被用于流式细胞仪在人类样本上 (表 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman Coulter, 6607111)被用于被用于流式细胞仪在猕猴样本上. J Virol (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman Coulter, CD28.2)被用于被用于流式细胞仪在猕猴样本上. Antimicrob Agents Chemother (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴
贝克曼库尔特实验系统(苏州)有限公司 CD28抗体(Beckman Coulter, CD28.2)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
Exbio
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 3a
Exbio CD28抗体(Exbio, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 3a). J Virol (2018) ncbi
碧迪BD
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 小鼠; 1:200; 图 1c, 7a
碧迪BD CD28抗体(BD Biosciences, 562613)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c, 7a). Cancer Res (2021) ncbi
小鼠 单克隆(L293)
  • 流式细胞仪; 人类; 1:10; 图 2s1
碧迪BD CD28抗体(BD Biosciences, 348047)被用于被用于流式细胞仪在人类样本上浓度为1:10 (图 2s1). elife (2020) ncbi
小鼠 单克隆(L293)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 2d
碧迪BD CD28抗体(BD Biosciences, 340975)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 2d). elife (2020) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 1f
碧迪BD CD28抗体(BD Biosciences, 556620)被用于被用于抑制或激活实验在人类样本上 (图 1f). elife (2020) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于流式细胞仪在人类样本上. J Immunother Cancer (2020) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 4d
碧迪BD CD28抗体(BD, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 4d). PLoS Pathog (2019) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 3b
碧迪BD CD28抗体(BD Biosciences, 555729)被用于被用于流式细胞仪在人类样本上 (图 3b). Cell Rep (2019) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 4a
碧迪BD CD28抗体(BD, CD28.2)被用于被用于抑制或激活实验在人类样本上 (图 4a). J Exp Med (2019) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2019) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴; 图 1f
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于流式细胞仪在猕猴样本上 (图 1f). J Virol (2019) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD28抗体(BD, 559770)被用于被用于流式细胞仪在人类样本上 (图 3). J Virol (2018) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD28抗体(BD, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 2). Biol Blood Marrow Transplant (2018) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
碧迪BD CD28抗体(BD Bioscience, CD28.2)被用于被用于流式细胞仪在人类样本上. J Immunol (2017) ncbi
小鼠 单克隆(L293)
  • 抑制或激活实验; 人类; 图 1a
碧迪BD CD28抗体(BD Biosciences, L293)被用于被用于抑制或激活实验在人类样本上 (图 1a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CD28抗体(BD, 555729)被用于被用于流式细胞仪在人类样本上 (图 4a). Science (2017) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 3e
碧迪BD CD28抗体(BD Biosciences, 559770)被用于被用于流式细胞仪在人类样本上 (图 3e). Oncoimmunology (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 2d
碧迪BD CD28抗体(BD Bioscience, CD28.2)被用于被用于抑制或激活实验在人类样本上 (图 2d). Clin Exp Allergy (2017) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于流式细胞仪在人类样本上. J Immunol Res (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 小鼠; 2 ug/ml; 图 s7a
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于抑制或激活实验在小鼠样本上浓度为2 ug/ml (图 s7a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 2 ug/ml; 图 s5
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于抑制或激活实验在人类样本上浓度为2 ug/ml (图 s5). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 表 3
碧迪BD CD28抗体(BD Pharmingen, CD28.2)被用于被用于流式细胞仪在人类样本上 (表 3). Brain Behav (2016) ncbi
小鼠 单克隆(L293)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CD28抗体(BD, L293)被用于被用于流式细胞仪在人类样本上 (图 5a). J Exp Med (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴; 图 1a
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于流式细胞仪在猕猴样本上 (图 1a). J Virol (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 猕猴; 表 1
碧迪BD CD28抗体(BD, CD28.2)被用于被用于流式细胞仪在猕猴样本上 (表 1). Am J Pathol (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 s2d
碧迪BD CD28抗体(BD, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 s2d). J Clin Invest (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 小鼠; 图 st1
碧迪BD CD28抗体(BD Pharmingen, CD28.2)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Clin Invest (2016) ncbi
小鼠 单克隆(L293)
  • 流式细胞仪; African green monkey; 图 s2
碧迪BD CD28抗体(BD, L 293)被用于被用于流式细胞仪在African green monkey样本上 (图 s2). J Med Primatol (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
碧迪BD CD28抗体(BD Pharmingen, 555728)被用于被用于流式细胞仪在人类样本上. Turk J Haematol (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 5
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 4
碧迪BD CD28抗体(BD Pharmigen, 555725)被用于被用于抑制或激活实验在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(L293)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CD28抗体(BD, L293)被用于被用于流式细胞仪在人类样本上 (图 2a). Cell Mol Immunol (2017) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CD28抗体(BD, 555729)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 1
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 1). Oncoimmunology (2016) ncbi
小鼠 单克隆(L293)
  • 流式细胞仪; 猕猴; 图 5c
碧迪BD CD28抗体(BD Biosciences, L293)被用于被用于流式细胞仪在猕猴样本上 (图 5c). PLoS ONE (2015) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 1.25 ug/ml; 图 2
碧迪BD CD28抗体(BD Bioscience, CD28.2)被用于被用于抑制或激活实验在人类样本上浓度为1.25 ug/ml (图 2). Nat Immunol (2016) ncbi
小鼠 单克隆(L293)
  • 抑制或激活实验; 人类; 图 s6
碧迪BD CD28抗体(BD Biosciences, L293)被用于被用于抑制或激活实验在人类样本上 (图 s6). PLoS ONE (2015) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 小鼠; 图 1c
碧迪BD CD28抗体(BD Biosciences, 555725)被用于被用于抑制或激活实验在小鼠样本上 (图 1c). Nat Commun (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD28抗体(BD Biosciences, 560685)被用于被用于流式细胞仪在人类样本上 (图 2). Retrovirology (2015) ncbi
小鼠 单克隆(L293)
  • 抑制或激活实验; 人类; 2.5 ug/ml; 图 1
  • 免疫印迹; 人类; 2.5 ug/ml; 图 1
碧迪BD CD28抗体(BD Biosciences, 348040)被用于被用于抑制或激活实验在人类样本上浓度为2.5 ug/ml (图 1) 和 被用于免疫印迹在人类样本上浓度为2.5 ug/ml (图 1). Genes Dev (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
碧迪BD CD28抗体(BD Pharmingen, 555728)被用于被用于流式细胞仪在人类样本上. Cent Eur J Immunol (2014) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 图 7d
碧迪BD CD28抗体(BD, CD28.2)被用于被用于抑制或激活实验在人类样本上 (图 7d). J Cell Biol (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 1:20
碧迪BD CD28抗体(BD Biosciences, 563075)被用于被用于流式细胞仪在人类样本上浓度为1:20. Nat Commun (2015) ncbi
小鼠 单克隆(L293)
  • 流式细胞仪; 猕猴
碧迪BD CD28抗体(BD Biosciences, L293)被用于被用于流式细胞仪在猕猴样本上. Vaccine (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 表 4
碧迪BD CD28抗体(BD Bioscience, CD28.2)被用于被用于流式细胞仪在人类样本上 (表 4). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(L293)
  • 其他; 人类; 图 2
碧迪BD CD28抗体(BD Biosciences, 340975)被用于被用于其他在人类样本上 (图 2). J Extracell Vesicles (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 图 7
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于流式细胞仪在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(L293)
  • 抑制或激活实验; 人类; 图 s3
碧迪BD CD28抗体(BD Pharmingen, 348040)被用于被用于抑制或激活实验在人类样本上 (图 s3). EMBO Mol Med (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类; 2.5 ug/ml
碧迪BD CD28抗体(BD Pharmingen, CD28.2)被用于被用于流式细胞仪在人类样本上浓度为2.5 ug/ml. Mol Immunol (2015) ncbi
小鼠 单克隆(CD28.2)
  • 免疫组化; 小鼠; 1:300
碧迪BD CD28抗体(BD, 28.2)被用于被用于免疫组化在小鼠样本上浓度为1:300. Nat Immunol (2015) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 1 ug/ml; 图 2
碧迪BD CD28抗体(BD Pharmingen, 555725)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml (图 2). Mol Cell Biol (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于流式细胞仪在人类样本上. Rheumatology (Oxford) (2015) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; baboons; 图 1
碧迪BD CD28抗体(Becton-Dickinson, clone CD28.2)被用于被用于流式细胞仪在baboons样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
碧迪BD CD28抗体(BD, CD28.2)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于抑制或激活实验在人类样本上. Immunobiology (2015) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 1 ug/ml
碧迪BD CD28抗体(BD, 555725)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml. Atherosclerosis (2014) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 5 ug/ml
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml. J Immunol (2014) ncbi
小鼠 单克隆(CD28.2)
  • 流式细胞仪; 人类
碧迪BD CD28抗体(BD Biosciences, CD28.2)被用于被用于流式细胞仪在人类样本上. Blood (2014) ncbi
小鼠 单克隆(L293)
  • 抑制或激活实验; 人类; 1 ug/ml
碧迪BD CD28抗体(BD, L293)被用于被用于抑制或激活实验在人类样本上浓度为1 ug/ml. PLoS ONE (2014) ncbi
小鼠 单克隆(CD28.2)
  • 抑制或激活实验; 人类; 5 ug/ml
碧迪BD CD28抗体(BD, 555725)被用于被用于抑制或激活实验在人类样本上浓度为5 ug/ml. PLoS ONE (2014) ncbi
小鼠 单克隆(L293)
  • 流式细胞仪; 人类
碧迪BD CD28抗体(BD, L293)被用于被用于流式细胞仪在人类样本上. Retrovirology (2014) ncbi
小鼠 单克隆(CD28.2)
  • 免疫细胞化学; 人类; 5 ug/ml
碧迪BD CD28抗体(BD Pharmingen, 555725)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml. Mol Cell Biol (2013) ncbi
文章列表
  1. Laffey K, Stiles R, Ludescher M, Davis T, Khwaja S, Bram R, et al. Early expression of mature αβ TCR in CD4-CD8- T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations. Proc Natl Acad Sci U S A. 2022;119:e2118529119 pubmed 出版商
  2. Hickman T, Choi E, Whiteman K, Muralidharan S, Pai T, Johnson T, et al. BOXR1030, an anti-GPC3 CAR with exogenous GOT2 expression, shows enhanced T cell metabolism and improved anti-cell line derived tumor xenograft activity. PLoS ONE. 2022;17:e0266980 pubmed 出版商
  3. Jiang Z, Qin L, Tang Y, Liao R, Shi J, He B, et al. Human induced-T-to-natural killer cells have potent anti-tumour activities. Biomark Res. 2022;10:13 pubmed 出版商
  4. Liu M, Wu C, Luo S, Hua Q, Chen H, Weng Y, et al. PERK reprograms hematopoietic progenitor cells to direct tumor-promoting myelopoiesis in the spleen. J Exp Med. 2022;219: pubmed 出版商
  5. Sibilio A, Suñer C, Fernández Alfara M, Martín J, Berenguer A, Calon A, et al. Immune translational control by CPEB4 regulates intestinal inflammation resolution and colorectal cancer development. iScience. 2022;25:103790 pubmed 出版商
  6. Nathan A, Rossin E, Kaseke C, Park R, Khatri A, Koundakjian D, et al. Structure-guided T cell vaccine design for SARS-CoV-2 variants and sarbecoviruses. Cell. 2021;: pubmed 出版商
  7. West J, Austin E, Rizzi E, Yan L, Tanjore H, Crabtree A, et al. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci. 2021;22: pubmed 出版商
  8. Szabo P, Dogra P, Gray J, Wells S, Connors T, Weisberg S, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021;54:797-814.e6 pubmed 出版商
  9. Kharkwal S, Johndrow C, Veerapen N, Kharkwal H, Saavedra Avila N, Carreño L, et al. Serial Stimulation of Invariant Natural Killer T Cells with Covalently Stabilized Bispecific T-cell Engagers Generates Antitumor Immunity While Avoiding Anergy. Cancer Res. 2021;81:1788-1801 pubmed 出版商
  10. Lafouresse F, Jugele R, Müller S, Doineau M, Duplan Eche V, Espinosa E, et al. Stochastic asymmetric repartition of lytic machinery in dividing CD8+ T cells generates heterogeneous killing behavior. elife. 2021;10: pubmed 出版商
  11. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  12. Neidleman J, Luo X, Frouard J, Xie G, Hsiao F, Ma T, et al. Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. elife. 2020;9: pubmed 出版商
  13. Gunesch J, Dixon A, Ebrahim T, Berrien Elliott M, Tatineni S, Kumar T, et al. CD56 regulates human NK cell cytotoxicity through Pyk2. elife. 2020;9: pubmed 出版商
  14. Zurli V, Montecchi T, Heilig R, Poschke I, Volkmar M, Wimmer G, et al. Phosphoproteomics of CD2 signaling reveals AMPK-dependent regulation of lytic granule polarization in cytotoxic T cells. Sci Signal. 2020;13: pubmed 出版商
  15. Liu G, Yu Y, Feng F, Zhu P, Zhang H, Zhang D, et al. Human CD8+CD28- T suppressor cells expanded by common gamma chain (γc) cytokines retain steady allospecific suppressive capacity in vivo. BMC Immunol. 2020;21:23 pubmed 出版商
  16. Pallikkuth S, Chaudhury S, Lu P, Pan L, Jongert E, Wille Reece U, et al. A delayed fractionated dose RTS,S AS01 vaccine regimen mediates protection via improved T follicular helper and B cell responses. elife. 2020;9: pubmed 出版商
  17. Hajaj E, Eisenberg G, Klein S, Frankenburg S, Merims S, Ben David I, et al. SLAMF6​ deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. elife. 2020;9: pubmed 出版商
  18. Marotte L, Simon S, Vignard V, Dupré E, Gantier M, Cruard J, et al. Increased antitumor efficacy of PD-1-deficient melanoma-specific human lymphocytes. J Immunother Cancer. 2020;8: pubmed 出版商
  19. Zhao Y, Lee C, Lin C, Gassen R, Xu X, Huang Z, et al. PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways. Immunity. 2019;51:1059-1073.e9 pubmed 出版商
  20. Pech M, Fong L, Villalta J, Chan L, Kharbanda S, O Brien J, et al. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. elife. 2019;8: pubmed 出版商
  21. Banga R, Rebecchini C, Procopio F, Noto A, Munoz O, Ioannidou K, et al. Lymph node migratory dendritic cells modulate HIV-1 transcription through PD-1 engagement. PLoS Pathog. 2019;15:e1007918 pubmed 出版商
  22. Celis Gutierrez J, Blattmann P, Zhai Y, Jarmuzynski N, Ruminski K, Gregoire C, et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019;27:3315-3330.e7 pubmed 出版商
  23. Han L, Hu J, Ma B, Wen D, Zhang T, Lu Z, et al. IL-17A increases MHC class I expression and promotes T cell activation in papillary thyroid cancer patients with coexistent Hashimoto's thyroiditis. Diagn Pathol. 2019;14:52 pubmed 出版商
  24. Fenwick C, Loredo Varela J, Joo V, Pellaton C, Farina A, Rajah N, et al. Tumor suppression of novel anti-PD-1 antibodies mediated through CD28 costimulatory pathway. J Exp Med. 2019;: pubmed 出版商
  25. Humeniuk P, Geiselhart S, Battin C, Webb T, Steinberger P, Paster W, et al. Generation of a Jurkat-based fluorescent reporter cell line to evaluate lipid antigen interaction with the human iNKT cell receptor. Sci Rep. 2019;9:7426 pubmed 出版商
  26. Remmerswaal E, Hombrink P, Nota B, Pircher H, ten Berge I, van Lier R, et al. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8+ T-cell populations in humans. Eur J Immunol. 2019;49:694-708 pubmed 出版商
  27. Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango M, Kaufmann S, et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell. 2019;: pubmed 出版商
  28. Montel Hagen A, Seet C, Li S, Chick B, Zhu Y, Chang P, et al. Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2019;24:376-389.e8 pubmed 出版商
  29. Hoang T, Harper J, Pino M, Wang H, Micci L, King C, et al. Bone Marrow-Derived CD4+ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol. 2019;93: pubmed 出版商
  30. Fischer M, Bantug G, Dimeloe S, Gubser P, Burgener A, Grählert J, et al. Early effector maturation of naïve human CD8+ T cells requires mitochondrial biogenesis. Eur J Immunol. 2018;48:1632-1643 pubmed 出版商
  31. Zhao Y, Harrison D, Song Y, Ji J, Huang J, Hui E. Antigen-Presenting Cell-Intrinsic PD-1 Neutralizes PD-L1 in cis to Attenuate PD-1 Signaling in T Cells. Cell Rep. 2018;24:379-390.e6 pubmed 出版商
  32. Heusinger E, Deppe K, Sette P, Krapp C, Kmiec D, Kluge S, et al. Preadaptation of Simian Immunodeficiency Virus SIVsmm Facilitated Env-Mediated Counteraction of Human Tetherin by Human Immunodeficiency Virus Type 2. J Virol. 2018;92: pubmed 出版商
  33. Ferrando Martinez S, Moysi E, Pegu A, Andrews S, Nganou Makamdop K, Ambrozak D, et al. Accumulation of follicular CD8+ T cells in pathogenic SIV infection. J Clin Invest. 2018;128:2089-2103 pubmed 出版商
  34. Shi Y, Zhang P, Wang G, Liu X, Sun X, Zhang X, et al. Description of organ-specific phenotype, and functional characteristics of tissue resident lymphocytes from liver transplantation donor and research on immune tolerance mechanism of liver. Oncotarget. 2018;9:15552-15565 pubmed 出版商
  35. Gee M, Han A, Lofgren S, Beausang J, Mendoza J, Birnbaum M, et al. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell. 2018;172:549-563.e16 pubmed 出版商
  36. Hutten T, Norde W, Woestenenk R, Wang R, Maas F, Kester M, et al. Increased Coexpression of PD-1, TIGIT, and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018;24:666-677 pubmed 出版商
  37. Moreno Cubero E, Subira D, Sanz de Villalobos E, Parra Cid T, Madejon A, Miquel J, et al. According to Hepatitis C Virus (HCV) Infection Stage, Interleukin-7 Plus 4-1BB Triggering Alone or Combined with PD-1 Blockade Increases TRAF1low HCV-Specific CD8+ Cell Reactivity. J Virol. 2018;92: pubmed 出版商
  38. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  39. Salio M, Gasser O, González López C, Martens A, Veerapen N, Gileadi U, et al. Activation of Human Mucosal-Associated Invariant T Cells Induces CD40L-Dependent Maturation of Monocyte-Derived and Primary Dendritic Cells. J Immunol. 2017;199:2631-2638 pubmed 出版商
  40. Liaskou E, Jeffery L, Chanouzas D, Soskic B, Seldin M, Harper L, et al. Genetic variation at the CD28 locus and its impact on expansion of pro-inflammatory CD28 negative T cells in healthy individuals. Sci Rep. 2017;7:7652 pubmed 出版商
  41. Zhang X, Lian X, Dai Z, Zheng H, Chen X, Zheng Y. ?3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. J Immunol. 2017;199:2030-2042 pubmed 出版商
  42. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  43. Dias J, Leeansyah E, Sandberg J. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. 2017;114:E5434-E5443 pubmed 出版商
  44. Zheng C, Zheng L, Yoo J, Guo H, Zhang Y, Guo X, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017;169:1342-1356.e16 pubmed 出版商
  45. Domae E, Hirai Y, Ikeo T, Goda S, Shimizu Y. Cytokine-mediated activation of human ex vivo-expanded V?9V?2 T cells. Oncotarget. 2017;8:45928-45942 pubmed 出版商
  46. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  47. He W, Wang C, Mu R, Liang P, Huang Z, Zhang J, et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles. Oncogene. 2017;36:4212-4223 pubmed 出版商
  48. Khodadoust M, Olsson N, Wagar L, Haabeth O, Chen B, Swaminathan K, et al. Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature. 2017;543:723-727 pubmed 出版商
  49. Hui E, Cheung J, Zhu J, Su X, Taylor M, Wallweber H, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355:1428-1433 pubmed 出版商
  50. Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang S, Marquardt N, et al. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity. 2017;46:287-300 pubmed 出版商
  51. Su S, Zou Z, Chen F, Ding N, Du J, Shao J, et al. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology. 2017;6:e1249558 pubmed 出版商
  52. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop H, Rooney C, et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology. 2016;5:e1253656 pubmed 出版商
  53. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  54. Kinosada H, Yasunaga J, Shimura K, Miyazato P, Onishi C, Iyoda T, et al. HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors. PLoS Pathog. 2017;13:e1006120 pubmed 出版商
  55. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  56. Raap U, Gehring M, Kleiner S, Rüdrich U, Eiz Vesper B, Haas H, et al. Human basophils are a source of - and are differentially activated by - IL-31. Clin Exp Allergy. 2017;47:499-508 pubmed 出版商
  57. Sairafi D, Stikvoort A, Gertow J, Mattsson J, Uhlin M. Donor Cell Composition and Reactivity Predict Risk of Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. J Immunol Res. 2016;2016:5601204 pubmed
  58. Morita K, Okamura T, Inoue M, Komai T, Teruya S, Iwasaki Y, et al. Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production. Proc Natl Acad Sci U S A. 2016;113:E8131-E8140 pubmed
  59. Ryan P, Sumaria N, Holland C, Bradford C, Izotova N, Grandjean C, et al. Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc Natl Acad Sci U S A. 2016;113:14378-14383 pubmed
  60. Villanueva Cabello T, Martinez Duncker I. Preparation of CD4+ T Cells for Analysis of GD3 and GD2 Ganglioside Membrane Expression by Microscopy. J Vis Exp. 2016;: pubmed 出版商
  61. Peters C, Häsler R, Wesch D, Kabelitz D. Human Vδ2 T cells are a major source of interleukin-9. Proc Natl Acad Sci U S A. 2016;113:12520-12525 pubmed
  62. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  63. Dyer W, Tan J, Day T, Kiers L, Kiernan M, Yiannikas C, et al. Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Brain Behav. 2016;6:e00516 pubmed
  64. Hu X, Valentin A, Dayton F, Kulkarni V, Alicea C, Rosati M, et al. DNA Prime-Boost Vaccine Regimen To Increase Breadth, Magnitude, and Cytotoxicity of the Cellular Immune Responses to Subdominant Gag Epitopes of Simian Immunodeficiency Virus and HIV. J Immunol. 2016;197:3999-4013 pubmed
  65. Komdeur F, Wouters M, Workel H, Tijans A, Terwindt A, Brunekreeft K, et al. CD103+ intraepithelial T cells in high-grade serous ovarian cancer are phenotypically diverse TCRαβ+ CD8αβ+ T cells that can be targeted for cancer immunotherapy. Oncotarget. 2016;7:75130-75144 pubmed 出版商
  66. Jung Y, Riven I, Feigelson S, Kartvelishvily E, Tohya K, Miyasaka M, et al. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci U S A. 2016;113:E5916-E5924 pubmed
  67. Wang Y, Ma C, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213:2413-2435 pubmed
  68. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  69. Pachnio A, Ciáurriz M, Begum J, Lal N, Zuo J, Beggs A, et al. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium. PLoS Pathog. 2016;12:e1005832 pubmed 出版商
  70. Pageon S, Nicovich P, Mollazade M, Tabarin T, Gaus K. Clus-DoC: a combined cluster detection and colocalization analysis for single-molecule localization microscopy data. Mol Biol Cell. 2016;27:3627-3636 pubmed
  71. Pageon S, Tabarin T, Yamamoto Y, Ma Y, Nicovich P, Bridgeman J, et al. Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc Natl Acad Sci U S A. 2016;113:E5454-63 pubmed 出版商
  72. Ayala V, Trivett M, Barsov E, Jain S, Piatak M, Trubey C, et al. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques. J Virol. 2016;90:9942-9952 pubmed 出版商
  73. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  74. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  75. DeGottardi M, Okoye A, Vaidya M, Talla A, Konfe A, Reyes M, et al. Effect of Anti-IL-15 Administration on T Cell and NK Cell Homeostasis in Rhesus Macaques. J Immunol. 2016;197:1183-98 pubmed 出版商
  76. Williams D, Engle E, Shirk E, Queen S, Gama L, Mankowski J, et al. Splenic Damage during SIV Infection: Role of T-Cell Depletion and Macrophage Polarization and Infection. Am J Pathol. 2016;186:2068-2087 pubmed 出版商
  77. Heath J, Newhook N, Comeau E, Gallant M, Fudge N, Grant M. NKG2C(+)CD57(+) Natural Killer Cell Expansion Parallels Cytomegalovirus-Specific CD8(+) T Cell Evolution towards Senescence. J Immunol Res. 2016;2016:7470124 pubmed 出版商
  78. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa L, Rodgers J, et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Invest. 2016;126:2678-88 pubmed 出版商
  79. Ramos C, Savoldo B, Torrano V, Ballard B, Zhang H, Dakhova O, et al. Clinical responses with T lymphocytes targeting malignancy-associated ? light chains. J Clin Invest. 2016;126:2588-96 pubmed 出版商
  80. Ma Q, Garber H, Lu S, He H, Tallis E, Ding X, et al. A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy. 2016;18:985-94 pubmed 出版商
  81. Hahn S, Neuhoff A, Landsberg J, Schupp J, Eberts D, Leukel P, et al. A key role of GARP in the immune suppressive tumor microenvironment. Oncotarget. 2016;7:42996-43009 pubmed 出版商
  82. van der Heiden M, van Zelm M, Bartol S, de Rond L, Berbers G, Boots A, et al. Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females. Sci Rep. 2016;6:26892 pubmed 出版商
  83. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  84. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  85. Akyol Erikci A, Karagoz B, Bilgi O. Regulatory T Cells in Patients with Idiopathic Thrombocytopenic Purpura. Turk J Haematol. 2016;33:153-5 pubmed 出版商
  86. Stikvoort A, Sundin M, Uzunel M, Gertow J, Sundberg B, Schaffer M, et al. Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE. 2016;11:e0154737 pubmed 出版商
  87. Maki Y, Nishimura Y, Toyooka S, Soh J, Tsukuda K, Shien K, et al. The proliferative effects of asbestos-exposed peripheral blood mononuclear cells on mesothelial cells. Oncol Lett. 2016;11:3308-3316 pubmed
  88. Kumar A, Abbas W, Colin L, Khan K, Bouchat S, Varin A, et al. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line. Sci Rep. 2016;6:24090 pubmed 出版商
  89. Moura J, Rodrigues J, Goncalves M, Amaral C, Lima M, Carvalho E. Impaired T-cell differentiation in diabetic foot ulceration. Cell Mol Immunol. 2017;14:758-769 pubmed 出版商
  90. van der Heide V, Möhnle P, Rink J, Briegel J, Kreth S. Down-regulation of MicroRNA-31 in CD4+ T Cells Contributes to Immunosuppression in Human Sepsis by Promoting TH2 Skewing. Anesthesiology. 2016;124:908-22 pubmed 出版商
  91. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  92. Simon S, Vignard V, Florenceau L, Dreno B, Khammari A, Lang F, et al. PD-1 expression conditions T cell avidity within an antigen-specific repertoire. Oncoimmunology. 2016;5:e1104448 pubmed
  93. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  94. Liu L, Sommermeyer D, Cabanov A, Kosasih P, Hill T, Riddell S. Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat Biotechnol. 2016;34:430-4 pubmed 出版商
  95. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  96. Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:20070 pubmed 出版商
  97. Jutz S, Leitner J, Schmetterer K, Doel Perez I, Majdic O, Grabmeier Pfistershammer K, et al. Assessment of costimulation and coinhibition in a triple parameter T cell reporter line: Simultaneous measurement of NF-κB, NFAT and AP-1. J Immunol Methods. 2016;430:10-20 pubmed 出版商
  98. Barzilai S, Blecher Gonen R, Barnett Itzhaki Z, Zauberman A, Lebel Haziv Y, Amit I, et al. M-sec regulates polarized secretion of inflammatory endothelial chemokines and facilitates CCL2-mediated lymphocyte transendothelial migration. J Leukoc Biol. 2016;99:1045-55 pubmed 出版商
  99. Bolton D, Pegu A, Wang K, McGinnis K, Nason M, Foulds K, et al. Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. J Virol. 2016;90:1321-32 pubmed 出版商
  100. Javed A, Leuchte N, Neumann B, Sopper S, Sauermann U. Noncytolytic CD8+ Cell Mediated Antiviral Response Represents a Strong Element in the Immune Response of Simian Immunodeficiency Virus-Infected Long-Term Non-Progressing Rhesus Macaques. PLoS ONE. 2015;10:e0142086 pubmed 出版商
  101. Vierboom M, Breedveld E, Kap Y, Mary C, Poirier N, t Hart B, et al. Clinical efficacy of a new CD28-targeting antagonist of T cell co-stimulation in a non-human primate model of collagen-induced arthritis. Clin Exp Immunol. 2016;183:405-18 pubmed 出版商
  102. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  103. Deisting W, Raum T, Kufer P, Baeuerle P, Münz M. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110. PLoS ONE. 2015;10:e0141669 pubmed 出版商
  104. Oh Y, Park H, Shin J, Lee J, Park H, Kho D, et al. Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun. 2015;6:8698 pubmed 出版商
  105. Heigele A, Joas S, Regensburger K, Kirchhoff F. Increased susceptibility of CD4+ T cells from elderly individuals to HIV-1 infection and apoptosis is associated with reduced CD4 and enhanced CXCR4 and FAS surface expression levels. Retrovirology. 2015;12:86 pubmed 出版商
  106. Martinez N, Agosto L, Qiu J, Mallory M, Gazzara M, Barash Y, et al. Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev. 2015;29:2054-66 pubmed 出版商
  107. Frederiksen J, Buggert M, Noyan K, Nowak P, Sönnerborg A, Lund O, et al. Multidimensional Clusters of CD4+ T Cell Dysfunction Are Primarily Associated with the CD4/CD8 Ratio in Chronic HIV Infection. PLoS ONE. 2015;10:e0137635 pubmed 出版商
  108. Silacci M, Lembke W, Woods R, Attinger Toller I, Baenziger Tobler N, Batey S, et al. Discovery and characterization of COVA322, a clinical-stage bispecific TNF/IL-17A inhibitor for the treatment of inflammatory diseases. MAbs. 2016;8:141-9 pubmed 出版商
  109. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol. 2015;16:1077-84 pubmed 出版商
  110. Biylgi O, Karagöz B, Türken O, Gültepe M, Özgün A, Tunçel T, et al. CD4+CD25(high), CD8+CD28- cells and thyroid autoantibodies in breast cancer patients. Cent Eur J Immunol. 2014;39:338-44 pubmed 出版商
  111. Marshall M, Pattu V, Halimani M, Maier Peuschel M, Müller M, Becherer U, et al. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity. J Cell Biol. 2015;210:135-51 pubmed 出版商
  112. Mikucki M, Fisher D, Matsuzaki J, Skitzki J, Gaulin N, Muhitch J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6:7458 pubmed 出版商
  113. Chowdhury A, Hayes T, Bosinger S, Lawson B, Vanderford T, Schmitz J, et al. Differential Impact of In Vivo CD8+ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. J Virol. 2015;89:8677-86 pubmed 出版商
  114. Soares A, Müller T, Chege G, Williamson A, Burgers W. Transient global T cell activation after vaccination of rhesus macaques with a DNA-poxvirus vaccine regimen for HIV. Vaccine. 2015;33:3435-9 pubmed 出版商
  115. Fromm J, Tagliente D, Shaver A, Neppalli V, Craig F. Case study interpretation: Report from the ICCS Annual Meeting, Seattle, 2014. Cytometry B Clin Cytom. 2015;88:413-24 pubmed 出版商
  116. Jørgensen M, Bæk R, Varming K. Potentials and capabilities of the Extracellular Vesicle (EV) Array. J Extracell Vesicles. 2015;4:26048 pubmed 出版商
  117. Rochman Y, Yukawa M, Kartashov A, Barski A. Functional characterization of human T cell hyporesponsiveness induced by CTLA4-Ig. PLoS ONE. 2015;10:e0122198 pubmed 出版商
  118. Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, et al. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med. 2015;7:754-69 pubmed 出版商
  119. Inglis H, Danesh A, Shah A, Lacroix J, Spinella P, Norris P. Techniques to improve detection and analysis of extracellular vesicles using flow cytometry. Cytometry A. 2015;87:1052-63 pubmed 出版商
  120. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell L, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015;6:6692 pubmed 出版商
  121. Lin M, Yuan Y, Xu J, Cai X, Liu S, Niu L, et al. Safety and efficacy study of nasopharyngeal cancer stem cell vaccine. Immunol Lett. 2015;165:26-31 pubmed 出版商
  122. Nouël A, Pochard P, Simon Q, Ségalen I, Le Meur Y, Pers J, et al. B-Cells induce regulatory T cells through TGF-β/IDO production in A CTLA-4 dependent manner. J Autoimmun. 2015;59:53-60 pubmed 出版商
  123. Ebsen H, Lettau M, Kabelitz D, Janssen O. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol Immunol. 2015;65:416-28 pubmed 出版商
  124. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  125. Fischer N, Elson G, Magistrelli G, Dheilly E, Fouque N, Laurendon A, et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat Commun. 2015;6:6113 pubmed 出版商
  126. Hill E, Ng T, Burton B, Oakley C, Malik K, Wraith D. Glycogen synthase kinase-3 controls IL-10 expression in CD4(+) effector T-cell subsets through epigenetic modification of the IL-10 promoter. Eur J Immunol. 2015;45:1103-15 pubmed 出版商
  127. Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, et al. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A. 2015;112:E556-65 pubmed 出版商
  128. Chauhan A, Chen C, Moore T, DiPaolo R. Induced expression of FcγRIIIa (CD16a) on CD4+ T cells triggers generation of IFN-γhigh subset. J Biol Chem. 2015;290:5127-40 pubmed 出版商
  129. Bushkin Y, Radford F, Pine R, Lardizabal A, Mangura B, Gennaro M, et al. Profiling T cell activation using single-molecule fluorescence in situ hybridization and flow cytometry. J Immunol. 2015;194:836-41 pubmed 出版商
  130. Campbell J, Ratai E, Autissier P, Nolan D, Tse S, Miller A, et al. Anti-?4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog. 2014;10:e1004533 pubmed 出版商
  131. Caramalho I, Nunes Silva V, Pires A, Mota C, Pinto A, Nunes Cabaço H, et al. Human regulatory T-cell development is dictated by Interleukin-2 and -15 expressed in a non-overlapping pattern in the thymus. J Autoimmun. 2015;56:98-110 pubmed 出版商
  132. Li J, Jie H, Lei Y, Gildener Leapman N, Trivedi S, Green T, et al. PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Res. 2015;75:508-518 pubmed 出版商
  133. Lugassy J, Corso J, Beach D, Petrik T, Oellerich T, Urlaub H, et al. Modulation of TCR responsiveness by the Grb2-family adaptor, Gads. Cell Signal. 2015;27:125-34 pubmed 出版商
  134. Dominguez Villar M, Gautron A, de Marcken M, Keller M, Hafler D. TLR7 induces anergy in human CD4(+) T cells. Nat Immunol. 2015;16:118-28 pubmed 出版商
  135. Makowski S, Wang Z, Pomerantz J. A protease-independent function for SPPL3 in NFAT activation. Mol Cell Biol. 2015;35:451-67 pubmed 出版商
  136. Fujita T, Burwitz B, Chew G, Reed J, Pathak R, Seger E, et al. Expansion of dysfunctional Tim-3-expressing effector memory CD8+ T cells during simian immunodeficiency virus infection in rhesus macaques. J Immunol. 2014;193:5576-83 pubmed 出版商
  137. Jansen D, Hameetman M, van Bergen J, Huizinga T, van der Heijde D, Toes R, et al. IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. Rheumatology (Oxford). 2015;54:728-35 pubmed 出版商
  138. Mylvaganam G, Velu V, Hong J, Sadagopal S, Kwa S, Basu R, et al. Diminished viral control during simian immunodeficiency virus infection is associated with aberrant PD-1hi CD4 T cell enrichment in the lymphoid follicles of the rectal mucosa. J Immunol. 2014;193:4527-36 pubmed 出版商
  139. Willis E, Eberle R, Wolf R, White G, McFarlane D. The effects of age and cytomegalovirus on markers of inflammation and lymphocyte populations in captive baboons. PLoS ONE. 2014;9:e107167 pubmed 出版商
  140. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  141. Valentin A, McKinnon K, Li J, Rosati M, Kulkarni V, Pilkington G, et al. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques. Clin Immunol. 2014;155:91-107 pubmed 出版商
  142. Matsuda K, Dang Q, Brown C, Keele B, Wu F, Ourmanov I, et al. Characterization of simian immunodeficiency virus (SIV) that induces SIV encephalitis in rhesus macaques with high frequency: role of TRIM5 and major histocompatibility complex genotypes and early entry to the brain. J Virol. 2014;88:13201-11 pubmed 出版商
  143. Del Prete G, Shoemaker R, Oswald K, Lara A, Trubey C, Fast R, et al. Effect of suberoylanilide hydroxamic acid (SAHA) administration on the residual virus pool in a model of combination antiretroviral therapy-mediated suppression in SIVmac239-infected indian rhesus macaques. Antimicrob Agents Chemother. 2014;58:6790-806 pubmed 出版商
  144. Steiner S, Daniel C, Fischer A, Atreya I, Hirschmann S, Waldner M, et al. Cyclosporine A regulates pro-inflammatory cytokine production in ulcerative colitis. Arch Immunol Ther Exp (Warsz). 2015;63:53-63 pubmed 出版商
  145. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  146. Bennaceur K, Atwill M, Al Zhrany N, Hoffmann J, Keavney B, BREAULT D, et al. Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediated mechanism. Atherosclerosis. 2014;236:312-20 pubmed 出版商
  147. Frencher J, Shen H, Yan L, Wilson J, Freitag N, Rizzo A, et al. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells. J Leukoc Biol. 2014;96:957-67 pubmed 出版商
  148. Bending D, Pesenacker A, Ursu S, Wu Q, Lom H, Thirugnanabalan B, et al. Hypomethylation at the regulatory T cell-specific demethylated region in CD25hi T cells is decoupled from FOXP3 expression at the inflamed site in childhood arthritis. J Immunol. 2014;193:2699-708 pubmed 出版商
  149. Weist B, Schmueck M, Fuehrer H, Sattler A, Reinke P, Babel N. The role of CD4(+) T cells in BKV-specific T cell immunity. Med Microbiol Immunol. 2014;203:395-408 pubmed 出版商
  150. Lee Chang C, Bodogai M, Moritoh K, Olkhanud P, Chan A, Croft M, et al. Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood. 2014;124:1450-9 pubmed 出版商
  151. Pegram H, Purdon T, van Leeuwen D, Curran K, Giralt S, Barker J, et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia. 2015;29:415-22 pubmed 出版商
  152. Wilson E, Singh A, Hullsiek K, Gibson D, Henry W, Lichtenstein K, et al. Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis. 2014;210:1396-406 pubmed 出版商
  153. Mao C, Mou X, Zhou Y, Yuan G, Xu C, Liu H, et al. Tumor-activated TCR??? T cells from gastric cancer patients induce the antitumor immune response of TCR??? T cells via their antigen-presenting cell-like effects. J Immunol Res. 2014;2014:593562 pubmed 出版商
  154. Cartwright E, McGary C, Cervasi B, Micci L, Lawson B, Elliott S, et al. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections. J Immunol. 2014;192:4666-73 pubmed 出版商
  155. Lanteri M, Diamond M, Law J, Chew G, Wu S, Inglis H, et al. Increased frequency of Tim-3 expressing T cells is associated with symptomatic West Nile virus infection. PLoS ONE. 2014;9:e92134 pubmed 出版商
  156. Peguillet I, Milder M, Louis D, Vincent Salomon A, Dorval T, Piperno Neumann S, et al. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer. Cancer Res. 2014;74:2204-16 pubmed 出版商
  157. Wertheimer A, Bennett M, Park B, Uhrlaub J, Martinez C, Pulko V, et al. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol. 2014;192:2143-55 pubmed 出版商
  158. Ilander M, Kreutzman A, Rohon P, Melo T, Faber E, Porkka K, et al. Enlarged memory T-cell pool and enhanced Th1-type responses in chronic myeloid leukemia patients who have successfully discontinued IFN-? monotherapy. PLoS ONE. 2014;9:e87794 pubmed 出版商
  159. Bashour K, Gondarenko A, Chen H, Shen K, Liu X, Huse M, et al. CD28 and CD3 have complementary roles in T-cell traction forces. Proc Natl Acad Sci U S A. 2014;111:2241-6 pubmed 出版商
  160. Kulkarni V, Valentin A, Rosati M, Alicea C, Singh A, Jalah R, et al. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques. PLoS ONE. 2014;9:e86254 pubmed 出版商
  161. Sakamoto T, Kobayashi M, Tada K, Shinohara M, Io K, Nagata K, et al. CKIP-1 is an intrinsic negative regulator of T-cell activation through an interaction with CARMA1. PLoS ONE. 2014;9:e85762 pubmed 出版商
  162. Kloog Y, Mor A. Cytotoxic-T-lymphocyte antigen 4 receptor signaling for lymphocyte adhesion is mediated by C3G and Rap1. Mol Cell Biol. 2014;34:978-88 pubmed 出版商
  163. Koppensteiner H, H hne K, Gondim M, Gobert F, Widder M, Gundlach S, et al. Lentiviral Nef suppresses iron uptake in a strain specific manner through inhibition of Transferrin endocytosis. Retrovirology. 2014;11:1 pubmed 出版商
  164. Rodriguez M, Loyd C, Ding X, Karim A, MCDONALD D, Canaday D, et al. Mycobacterial phosphatidylinositol mannoside 6 (PIM6) up-regulates TCR-triggered HIV-1 replication in CD4+ T cells. PLoS ONE. 2013;8:e80938 pubmed 出版商
  165. Demberg T, Brocca Cofano E, Kuate S, Aladi S, Vargas Inchaustegui D, Venzon D, et al. Impact of antibody quality and anamnestic response on viremia control post-challenge in a combined Tat/Env vaccine regimen in rhesus macaques. Virology. 2013;440:210-21 pubmed 出版商
  166. Moreno Garcia M, Sommer K, Rincón Arano H, Brault M, Ninomiya Tsuji J, Matesic L, et al. Kinase-independent feedback of the TAK1/TAB1 complex on BCL10 turnover and NF-?B activation. Mol Cell Biol. 2013;33:1149-63 pubmed 出版商
  167. Reuter M, Yuan S, Marx P, Kutzler M, Weiner D, Betts M. DNA-based HIV vaccines do not induce generalized activation in mucosal tissue T cells. Hum Vaccin Immunother. 2012;8:1648-53 pubmed 出版商
  168. Qi Y, Operario D, Georas S, Mosmann T. The acute environment, rather than T cell subset pre-commitment, regulates expression of the human T cell cytokine amphiregulin. PLoS ONE. 2012;7:e39072 pubmed 出版商
  169. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  170. Markley J, Sadelain M. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood. 2010;115:3508-19 pubmed 出版商
  171. Brucklacher Waldert V, Steinbach K, Lioznov M, Kolster M, Holscher C, Tolosa E. Phenotypical characterization of human Th17 cells unambiguously identified by surface IL-17A expression. J Immunol. 2009;183:5494-501 pubmed 出版商
  172. Cernea S, Herold K. Monitoring of antigen-specific CD8 T cells in patients with type 1 diabetes treated with antiCD3 monoclonal antibodies. Clin Immunol. 2010;134:121-9 pubmed 出版商
  173. Hokey D, Johnson F, Smith J, Weber J, Yan J, Hirao L, et al. Activation drives PD-1 expression during vaccine-specific proliferation and following lentiviral infection in macaques. Eur J Immunol. 2008;38:1435-45 pubmed 出版商
  174. Muniz J, McCauley L, Scherer J, Lasarev M, Koshy M, Kow Y, et al. Biomarkers of oxidative stress and DNA damage in agricultural workers: a pilot study. Toxicol Appl Pharmacol. 2008;227:97-107 pubmed
  175. Sangiolo D, Lesnikova M, Nash R, Jensen M, Nikitine A, Kiem H, et al. Lentiviral vector conferring resistance to mycophenolate mofetil and sensitivity to ganciclovir for in vivo T-cell selection. Gene Ther. 2007;14:1549-54 pubmed
  176. Hoves S, Krause S, Schutz C, Halbritter D, Scholmerich J, Herfarth H, et al. Monocyte-derived human macrophages mediate anergy in allogeneic T cells and induce regulatory T cells. J Immunol. 2006;177:2691-8 pubmed
  177. Macchia I, Gauduin M, Kaur A, Johnson R. Expression of CD8alpha identifies a distinct subset of effector memory CD4+ T lymphocytes. Immunology. 2006;119:232-42 pubmed
  178. Quiroga M, Pasquinelli V, Martinez G, Jurado J, Zorrilla L, Musella R, et al. Inducible costimulator: a modulator of IFN-gamma production in human tuberculosis. J Immunol. 2006;176:5965-74 pubmed