这是一篇来自已证抗体库的有关人类 Bcl 2的综述,是根据517篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Bcl 2 抗体。
Bcl 2 同义词: Bcl-2; PPP1R50

圣克鲁斯生物技术
小鼠 单克隆(367.Ser 70)
  • 免疫印迹; 人类; 图 1g
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-293128)被用于被用于免疫印迹在人类样本上 (图 1g). Front Oncol (2022) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1g
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 1g). Front Oncol (2022) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 大鼠; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4a). Oxid Med Cell Longev (2022) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:2000. Bioeng Transl Med (2021) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2021) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 2d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 5g
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 6b). Redox Biol (2021) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). Neural Regen Res (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:300; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 4b). Med Sci Monit (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Cancer Lett (2020) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-509)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Biomolecules (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2k
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2k). Oncogene (2020) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(100)
  • 免疫细胞化学; 人类; 图 s6a
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, 100)被用于被用于免疫细胞化学在人类样本上 (图 s6a) 和 被用于免疫印迹在人类样本上 (图 7a). Cell Death Dis (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5d). Cells (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 3b
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Biosci Rep (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, C-2)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Dis (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:2000; 图 2c
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2c). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Oncol Rep (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4e
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4e). BMC Cancer (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 7a). Biomolecules (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:200; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4b). Cardiovasc Res (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). J Biol Chem (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:100; 图 4f
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, Inc, SC7382)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 4f). Mol Med Rep (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4h
  • 免疫印迹; 小鼠; 图 4c
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4h) 和 被用于免疫印迹在小鼠样本上 (图 4c). Cell Death Differ (2018) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:200; 图 3a
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz, SC-509)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3a). EMBO Mol Med (2018) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-509)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:500; 图 6a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Biomed Pharmacother (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 2d). Cell (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 5a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 4c). Nat Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫沉淀; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz, 7382)被用于被用于免疫沉淀在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). PLoS Genet (2017) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz, sc-56015)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Exp Ther Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5d). Cell Physiol Biochem (2017) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:2000; 图 2C
圣克鲁斯生物技术 Bcl 2抗体(Santa cruz, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2C). Mol Med Rep (2017) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 1:1000; 图 3b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-56015)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Apoptosis (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Bcl 2抗体(SC Biotech, C-2)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4b). Anticancer Res (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 6f
  • 免疫印迹; 小鼠; 1:500; 图 5d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6f) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5d). PLoS ONE (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc7382)被用于被用于免疫印迹在人类样本上 (图 1d). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 2d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Int J Mol Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4G
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4G). Oncotarget (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 6a). Nat Commun (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; gerbils; 1:1000; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在gerbils样本上浓度为1:1000 (图 5). Exp Ther Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:500; 图 7a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC7382)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Exp Ther Med (2016) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 1:2000; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-56015)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 3e). Exp Cell Res (2017) ncbi
小鼠 单克隆(7)
  • 免疫印迹; 人类; 图 s7
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-130308)被用于被用于免疫印迹在人类样本上 (图 s7). PLoS Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3a, b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, C-2)被用于被用于免疫印迹在人类样本上 (图 3a, b). PLoS ONE (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, C-2)被用于被用于免疫印迹在人类样本上 (图 2d). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, C-2)被用于被用于免疫印迹在人类样本上 (图 2d). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-56015)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Exp Ther Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, Sc-509)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Death Discov (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-7382)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Cancer Gene Ther (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc509)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Cell Int (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Biochem Biophys (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫组化; 人类; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Autophagy (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2). Biomed Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4g). Oncotarget (2017) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于流式细胞仪在人类样本上 (图 4a). Eur J Cell Biol (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 1). Genes Dev (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上. J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz Biotechnology, Sc-509)被用于被用于免疫印迹在人类样本上 (图 5c). Urol Oncol (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4b). PLoS ONE (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 4). BMC Cancer (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 3a, 3b, 3c, 3d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509 FITC)被用于被用于流式细胞仪在人类样本上 (图 3a, 3b, 3c, 3d). Nutr Cancer (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:300; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(C-2)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 Bcl 2抗体(SCBT, C-2)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 Bcl 2抗体(SCBT, C-2)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 1d). Int J Mol Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Med (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, SC-377576)被用于被用于免疫印迹在小鼠样本上 (图 5). Aging Cell (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫组化; 大鼠; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫组化在大鼠样本上 (图 2). Nutr Cancer (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Carcinog (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Mol Med Rep (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 仓鼠; 图 6
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-7382)被用于被用于免疫印迹在仓鼠样本上 (图 6). Int J Mol Sci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2h
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 2h). J Biol Chem (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上 (图 4). Am J Physiol Heart Circ Physiol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Endocr Relat Cancer (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 3d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-509)被用于被用于免疫印迹在人类样本上 (图 5e). BMC Cancer (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Cell Int (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, 100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). PLoS ONE (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 6c
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-509)被用于被用于免疫印迹在人类样本上 (图 6c). BMC Cancer (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 st2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 st2). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 7d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 7d). J Interferon Cytokine Res (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc7382)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc509)被用于被用于免疫印迹在人类样本上 (图 5). BMC Genomics (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 6A). Int J Oncol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 流式细胞仪; 小鼠; 2 ug/ml
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml 和 被用于免疫印迹在小鼠样本上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cancer Cell Int (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在大鼠样本上 (图 7). Biomed Res Int (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotech, sc-7382)被用于被用于免疫印迹在人类样本上. Ecancermedicalscience (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:200; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, SC-7382)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 f4, f3
圣克鲁斯生物技术 Bcl 2抗体(santa cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 f4, f3). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnologies, sc-7382)被用于被用于免疫印迹在人类样本上. Lab Invest (2015) ncbi
小鼠 单克隆(12)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-130307)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 6c
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上 (图 6c). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:200. FASEB J (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在大鼠样本上 (图 5). Int J Mol Sci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:250; 图 1
  • 免疫印迹; 小鼠; 1:250; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382HRP)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:250 (图 2). Autophagy (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:50
  • 免疫印迹; 大鼠; 1:50
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:50 和 被用于免疫印迹在大鼠样本上浓度为1:50. Reprod Toxicol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Dis (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Oncol Lett (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:250; 图 1A
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1A). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 犬; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫组化-石蜡切片在犬样本上 (图 2). J Vet Sci (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上. Cell Oncol (Dordr) (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫沉淀; 人类; 2 ug/time
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫沉淀在人类样本上浓度为2 ug/time 和 被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:2000. Cell Death Dis (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 Bcl 2抗体(Santa cruz, SC-7382)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncotarget (2014) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa-Cruz, sc-509)被用于被用于免疫印迹在人类样本上. Biochimie (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. CNS Neurosci Ther (2014) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:200; 图 7
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, C-2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). J Cell Physiol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类; 1:200; 图 7
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, C-2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). J Cell Physiol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; kangaroo rats; 1:200; 图 3
圣克鲁斯生物技术 Bcl 2抗体(santa cruz, sc-7382)被用于被用于免疫印迹在kangaroo rats样本上浓度为1:200 (图 3). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(100)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Ophthalmol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-509)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Technology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Age (Dordr) (2014) ncbi
小鼠 单克隆(100)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-509)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:300-1:600; 图 6
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, Sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:300-1:600 (图 6). J Neuroinflammation (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 6d). Oncotarget (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 1). Cell Tissue Res (2014) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫组化; 大鼠; 1:10
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫组化在大鼠样本上浓度为1:10. Arthritis Res Ther (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-130308)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(12)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-130307)被用于被用于免疫印迹在小鼠样本上. J Hepatol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1,000
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1,000. Am J Physiol Endocrinol Metab (2013) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, 100)被用于被用于免疫印迹在人类样本上. Clin Cancer Res (2011) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 s7c
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc 509)被用于被用于免疫印迹在人类样本上 (图 s7c). J Neurochem (2008) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 猕猴
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在猕猴样本上. J Virol (2007) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上. Int J Cancer (2001) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E17)
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在小鼠样本上 (图 4a). iScience (2022) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncol Lett (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Bcl 2抗体(abcam, Ab196495)被用于被用于免疫印迹在小鼠样本上浓度为1:100. Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫组化; 人类; 图 3a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫组化在人类样本上 (图 3a). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 1:2000; 图 4c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4c). Leukemia (2022) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 大鼠; 1:500; 图 2f, s1a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab692)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2f, s1a). J Cell Mol Med (2022) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 6f
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 6f). J Cancer (2021) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab18858)被用于被用于免疫印迹在小鼠样本上 (图 6a). Theranostics (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:500; 图 4c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab185002)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Int J Oncol (2021) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 大鼠; 图 5c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab692)被用于被用于免疫印迹在大鼠样本上 (图 5c). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 1:2000; 图 4e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4e). Int J Oncol (2021) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 小鼠; 图 5d, 1b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在小鼠样本上 (图 5d, 1b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 5f
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Front Oncol (2021) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上 (图 3c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 小鼠; 1:1000; 图 3g
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, Ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 5c). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 小鼠; 1:2000; 图 3g
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3g). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(E17)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫组化在小鼠样本上浓度为1:500. Oncol Rep (2021) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫组化-石蜡切片; 小鼠; 图 2f, 5e
  • 免疫印迹; 小鼠; 图 2g
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2f, 5e) 和 被用于免疫印迹在小鼠样本上 (图 2g). Blood (2021) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上 (图 3a). Oncol Lett (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5e). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 1d
  • 免疫印迹; 大鼠; 图 5d
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d) 和 被用于免疫印迹在大鼠样本上 (图 5d). Ann Transl Med (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab185002)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). J Int Med Res (2021) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 1:2000; 图 2f, 7e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2f, 7e). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab194583)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 6h
艾博抗(上海)贸易有限公司 Bcl 2抗体(ABcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 5c). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 大鼠; 1:500; 图 6e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab185002)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2e, 7e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab194583)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e, 7e). Life Sci (2021) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 s5h
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 s5h). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2j
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2j). Cell Prolif (2021) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:5000; 图 7a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7a). Asian Pac J Cancer Prev (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 5f
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5f). J Am Heart Assoc (2020) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 4a, 4b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a, 4b). Int J Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b, 4d
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b, 4d). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 小鼠; 1:1000; 图 4h
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4h). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Transl Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab196495)被用于被用于免疫印迹在人类样本上 (图 2e). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:2000; 图 5e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5e). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6e). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1e, 2c, 5g
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e, 2c, 5g). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 9a
  • 免疫印迹; 小鼠; 图 9c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 9a) 和 被用于免疫印迹在小鼠样本上 (图 9c). Neurochem Res (2020) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 图 8
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab692)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2020) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 4h). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 图 1f
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上 (图 1f). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1200; 图 5b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:1200 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab185002)被用于被用于免疫印迹在人类样本上 (图 3c). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 2d, 2e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d, 2e). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫组化-石蜡切片; 人类; 图 8d
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 1:2000; 图 5b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5b). Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
艾博抗(上海)贸易有限公司 Bcl 2抗体(Cell Signaling, ab196495)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 9a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab196495)被用于被用于免疫印迹在人类样本上 (图 1c). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 1:2000; 图 8a, 8h
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8a, 8h). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 2c). Redox Biol (2019) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Metab (2019) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab692)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). Cell Metab (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Front Neurosci (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:2000; 图 5a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 s24b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 s24b). Nucleic Acids Res (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫组化-石蜡切片; 人类; 图 s1b
  • 免疫印迹; 人类; 图 s1c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1b) 和 被用于免疫印迹在人类样本上 (图 s1c). Science (2018) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:2000; 图 4b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上 (图 5a). J Mol Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7c). Neuropharmacology (2018) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 4c, 4d
艾博抗(上海)贸易有限公司 Bcl 2抗体(abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 4c, 4d). Oncotarget (2017) ncbi
单克隆
  • 免疫印迹; 小鼠; 1:400; 图 6a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab117115)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 6a). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 8a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, 32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 6a). FEBS Open Bio (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). J Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:750; 图 3a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:750 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 小鼠; 图 s2
艾博抗(上海)贸易有限公司 Bcl 2抗体(abcam, ab692)被用于被用于免疫印迹在小鼠样本上 (图 s2). Biol Sex Differ (2016) ncbi
单克隆
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab117115)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Onco Targets Ther (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Bcl 2抗体(abcam, ab692)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上 (图 7). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 4B
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 4B). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 7a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Exp Ther Med (2016) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; domestic rabbit; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Bcl 2抗体(abcam, 692)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 6). Mol Med Rep (2016) ncbi
单克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab117115)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在小鼠样本上 (图 2e). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:500; 图 3d
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). Sci Rep (2016) ncbi
单克隆
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab117115)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2015) ncbi
单克隆
  • 免疫印迹; 人类; 图 4e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab117115)被用于被用于免疫印迹在人类样本上 (图 4e). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(E17)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 5). Phytother Res (2015) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上. Mol Med Rep (2014) ncbi
小鼠 单克隆(100/D5)
  • 流式细胞仪; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab692)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Genet (2013) ncbi
赛默飞世尔
小鼠 单克隆(100/D5)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛默飞世尔 Bcl 2抗体(Thermo Fishers, MA5-11757)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(R.65.1)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 Bcl 2抗体(Thermo Fisher Scientific, MA5-15046)被用于被用于免疫印迹在人类样本上 (图 3a). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(100/D5)
  • 流式细胞仪; 人类; 1:50; 图 2d
赛默飞世尔 Bcl 2抗体(Thermo Fisher, MA5-11757)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2d). Oncotarget (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 1d
赛默飞世尔 Bcl 2抗体(ThermoFisher Scientific, PA5-27094)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 1d). Ultrastruct Pathol (2017) ncbi
家羊 多克隆
  • 免疫印迹; 人类; 1:200; 图 5b
赛默飞世尔 Bcl 2抗体(Thermo Fisher Scientific, PA1-28275)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5b). Mol Med Rep (2017) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 1:250; 图 1b
赛默飞世尔 Bcl 2抗体(Invitrogen, 138,800)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1b). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(Bcl2/100)
  • 流式细胞仪; 人类; 1:50; 图 4
赛默飞世尔 Bcl 2抗体(Invitrogen, A15796)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 1:500; 图 4f
赛默飞世尔 Bcl 2抗体(Invitrogen, 138800)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4f). Sci Rep (2016) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 Bcl 2抗体(Thermo Scientific, 100/D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Pathol Res Pract (2016) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Bcl 2抗体(Invitrogen, 138800)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Biochem (2016) ncbi
小鼠 单克隆(100/D5)
  • 流式细胞仪; 人类; 图 1
  • 免疫印迹; 人类; 图 s1
赛默飞世尔 Bcl 2抗体(Thermo Scientific, 100/D5)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化; 人类; 1:80; 图 5
赛默飞世尔 Bcl 2抗体(Invitrogen, Bcl-2-100)被用于被用于免疫组化在人类样本上浓度为1:80 (图 5). Diagn Pathol (2015) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 鸡; 1:1000; 图 7a
赛默飞世尔 Bcl 2抗体(Invitrogen, 13-8800)被用于被用于免疫印迹在鸡样本上浓度为1:1000 (图 7a). Gen Comp Endocrinol (2015) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Bcl 2抗体(Pierce, 100/D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Bcl 2抗体(LabVisio, 100/D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. APMIS (2015) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Bcl 2抗体(Invitrogen, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Int J Hematol (2015) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Bcl 2抗体(Invitrogen, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Tumour Biol (2014) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:700
赛默飞世尔 Bcl 2抗体(Invitrogen, 13-8800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:700. J Am Coll Surg (2014) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Bcl 2抗体(Thermo Scientific, 100/D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J BUON (2014) ncbi
小鼠 单克隆(Bcl2/100)
  • 流式细胞仪; 人类; 1:50
赛默飞世尔 Bcl 2抗体(生活技术, A15764)被用于被用于流式细胞仪在人类样本上浓度为1:50. Int J Nanomedicine (2014) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Bcl 2抗体(Thermo Labvision Fremont, MS-123-P0)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Pathol Res Pract (2014) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2)被用于被用于免疫组化在大鼠样本上浓度为1:200. Biometals (2014) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 人类
赛默飞世尔 Bcl 2抗体(eBioscience, Bcl-2/100)被用于被用于流式细胞仪在人类样本上. J Hepatol (2014) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Dent Res J (Isfahan) (2012) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Bcl 2抗体(Invitrogen/Life Technologies, 13-8800)被用于被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Mol Ther Nucleic Acids (2013) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫沉淀; 人类; 图 9
赛默飞世尔 Bcl 2抗体(Invitrogen, 13-8800)被用于被用于免疫沉淀在人类样本上 (图 9). Apoptosis (2013) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 Bcl 2抗体(Zymed, clone Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Pathol Oncol Res (2012) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 1:500
赛默飞世尔 Bcl 2抗体(Zymed, Bcl2-100)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2011) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 Bcl 2抗体(Invitrogen, clone 100)被用于被用于流式细胞仪在人类样本上 (图 5). Cytometry A (2011) ncbi
小鼠 单克隆(4D7)
  • 免疫印迹; 人类
赛默飞世尔 Bcl 2抗体(eBioscience, BMS1029)被用于被用于免疫印迹在人类样本上. Cell Cycle (2011) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 Bcl 2抗体(Caltag, 100)被用于被用于流式细胞仪在人类样本上 (图 2). Immunobiology (2011) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1, 2, 3
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1, 2, 3). Am J Surg Pathol (2010) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Bcl 2抗体(Invitrogen, 13-8800)被用于被用于免疫印迹在人类样本上 (图 4). Atherosclerosis (2010) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Thyroid (2009) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类
赛默飞世尔 Bcl 2抗体(Zymed Laboratories, Bcl-2-100)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2008) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2B
赛默飞世尔 Bcl 2抗体(Biosource, 100/D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2B). Neuropathology (2008) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔 Bcl 2抗体(Zymed/Invitrogen, bcl2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Int J Surg Pathol (2007) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Bcl 2抗体(Zymed, bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上. J Korean Med Sci (2007) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 Bcl 2抗体(Zymed, bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Clin Pathol (2007) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Oral Maxillofac Surg (2006) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Eur J Cancer Prev (2006) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫细胞化学; 人类; 表 1
赛默飞世尔 Bcl 2抗体(Zymed, Bcl2-100)被用于被用于免疫细胞化学在人类样本上 (表 1). J Autoimmun (2006) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化; 大鼠; 表 1
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化在大鼠样本上 (表 1). Clin Orthop Relat Res (2004) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Proc Natl Acad Sci U S A (2004) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化; 大鼠; 1:100; 图 3
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3). J Histochem Cytochem (2004) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔 Bcl 2抗体(Zymed, BCL-2-100)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Int J Gynecol Cancer (2003) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛默飞世尔 Bcl 2抗体(Zymed, bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Int J Gynecol Cancer (2003) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 Bcl 2抗体(Caltag, 100)被用于被用于流式细胞仪在人类样本上 (表 1). J Biol Regul Homeost Agents (2002) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Bcl 2抗体(Zymed, bcl 2-100)被用于被用于免疫组化-石蜡切片在人类样本上. Breast Cancer Res Treat (2002) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化; 人类; 1:20; 表 3
赛默飞世尔 Bcl 2抗体(Zymed, Bcl2-100)被用于被用于免疫组化在人类样本上浓度为1:20 (表 3). Hum Pathol (2002) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Bcl 2抗体(Zymed, 13-8800)被用于被用于免疫印迹在人类样本上 (图 5). Proc Natl Acad Sci U S A (2002) ncbi
小鼠 单克隆(Bcl-2-100)
  • 流式细胞仪; 人类
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2/100)被用于被用于流式细胞仪在人类样本上. Arthritis Rheum (2000) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 2, 3, 4
赛默飞世尔 Bcl 2抗体(Zymed, bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 2, 3, 4). Cancer (2000) ncbi
小鼠 单克隆(100)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 Bcl 2抗体(noco, noca)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Histopathology (1995) ncbi
BioLegend
小鼠 单克隆(BCL/10C4)
  • 免疫印迹; 小鼠; 图 1c
BioLegend Bcl 2抗体(BioLegend, BCL/10C4)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell Rep Methods (2022) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 1:200; 图 s4f
BioLegend Bcl 2抗体(BioLegend, 100)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s4f). Nature (2021) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 1:1000; 图 1g
BioLegend Bcl 2抗体(Biolegend, 633508)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1g). PLoS Biol (2021) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 s3o, 2j
BioLegend Bcl 2抗体(BioLegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上 (图 s3o, 2j). Science (2019) ncbi
小鼠 单克隆(100)
  • mass cytometry; 人类; 图 3a
BioLegend Bcl 2抗体(Biolegend, 658702)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 7.a','d
BioLegend Bcl 2抗体(BioLegend, 100)被用于被用于流式细胞仪在人类样本上 (图 7.a','d). Clin Exp Immunol (2017) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 1:100; 图 2d
BioLegend Bcl 2抗体(BioLegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2d). Nat Commun (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Bcl 2抗体(Biolegend, 633510)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Bcl 2抗体(BioLegend, BCL10C4)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Arthritis Rheumatol (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Bcl 2抗体(Biolegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Sci Rep (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 免疫印迹; 小鼠; 图 6
BioLegend Bcl 2抗体(BioLegend, 633502)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Death Differ (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠
BioLegend Bcl 2抗体(Biolegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠
BioLegend Bcl 2抗体(BioLegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
武汉博士德生物工程有限公司
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 大鼠; 1:2500; 图 7
武汉博士德生物工程有限公司 Bcl 2抗体(Boster, Bcl-2-100)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (图 7). Brain Behav (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 人类; 图 s1f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在人类样本上 (图 s1f). Mol Ther Oncolytics (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2875)被用于被用于免疫印迹在人类样本上 (图 1g). Front Oncol (2022) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6c
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Physiol Rep (2022) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). iScience (2022) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Death Discov (2022) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 人类; 1:300; 图 5a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498s)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 5a). Front Physiol (2022) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 3498)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). J Cell Mol Med (2022) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 4223S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cell Death Discov (2021) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 15071)被用于被用于免疫印迹在人类样本上 (图 9a). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498S)被用于被用于免疫印迹在人类样本上 (图 5g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498S)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cells (2021) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 3498S)被用于被用于免疫印迹在小鼠样本上 (图 s4c). Redox Biol (2021) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 15071)被用于被用于免疫印迹在人类样本上 (图 6f). Cell Death Discov (2021) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 15071)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Cancer Res (2021) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, D17C4)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Theranostics (2021) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Exp Ther Med (2021) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223T)被用于被用于免疫印迹在人类样本上 (图 4a). Front Immunol (2021) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071)被用于被用于免疫印迹在人类样本上 (图 3c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:1000; 图 1l
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 3498T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1l). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 人类; 图 5b
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 3498S)被用于被用于免疫印迹在人类样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). J Cancer (2021) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 15071)被用于被用于免疫印迹在人类样本上 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 3f). Cell Death Dis (2021) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 15071)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 3498)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 3498)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Front Pharmacol (2021) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 小鼠; 图 4h
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 15071)被用于被用于免疫印迹在小鼠样本上 (图 4h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3,498)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 5b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:100; 图 5b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 4223)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5b). Int J Oral Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 s5b). Sci Adv (2021) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Oncol Rep (2021) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 小鼠; 图 4h, 5h
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 15071)被用于被用于免疫印迹在小鼠样本上 (图 4h, 5h). Transl Psychiatry (2021) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). elife (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 4223)被用于被用于免疫印迹在人类样本上 (图 2a). BMC Complement Med Ther (2020) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 15071)被用于被用于免疫印迹在人类样本上 (图 4f). Front Cell Dev Biol (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Differ (2020) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 3498)被用于被用于免疫印迹在小鼠样本上 (图 3d). Hepatology (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1c, 4c, 8b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1c, 4c, 8b). Commun Biol (2020) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 15071)被用于被用于免疫印迹在人类样本上 (图 3d). Theranostics (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Exp Ther Med (2020) ncbi
小鼠 单克隆(124)
  • 免疫沉淀; 人类; 图 5a
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071S)被用于被用于免疫沉淀在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Autophagy (2020) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 1:500; 图 4c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Autophagy (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Biosci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 1d). Drug Des Devel Ther (2020) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498)被用于被用于免疫印迹在小鼠样本上 (图 2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 3498S)被用于被用于免疫印迹在小鼠样本上 (图 4c). Science (2019) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 4223S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Biol Open (2019) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 15071S)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cell signaling technologies, 2872)被用于被用于免疫印迹在人类样本上 (图 4b). Front Genet (2019) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 15071)被用于被用于免疫印迹在人类样本上 (图 7e). Biomolecules (2019) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 2c). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上 (图 3a). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 4f). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 s3d, s6c, s6f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上 (图 s3d, s6c, s6f). Science (2019) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 4c). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于免疫印迹在人类样本上 (图 4e). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Cancer Sci (2019) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signalling Technology, 3498)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). Redox Biol (2019) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cst, 3498)被用于被用于免疫印迹在小鼠样本上 (图 1h). J Mol Histol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 2872)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 2872)被用于被用于免疫印迹在人类样本上 (图 3b). Oncoimmunology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Am J Transl Res (2018) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498)被用于被用于免疫印迹在小鼠样本上 (图 2f). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2017) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 15071)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Biochem Pharmacol (2017) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 15071S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Mol Med Rep (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cell signalling, 4223)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Am J Transl Res (2017) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cell signalling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Int J Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cell signalling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:500; 图 4d
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 15071)被用于被用于免疫印迹在小鼠样本上 (图 2b). Lab Invest (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:3000; 图 5a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 3498)被用于被用于免疫印迹在小鼠样本上 (图 1a). JCI Insight (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 10a). Nature (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:500; 图 6
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 15071)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于免疫印迹在人类样本上 (图 7a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2875)被用于被用于免疫印迹在人类样本上 (图 7a). Autophagy (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 15071)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Sci (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, D55G8)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:800; 图 4a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, D55G8)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 2827)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Autophagy (2016) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫组化; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫组化在小鼠样本上 (图 5c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s18
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s18). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technolog, 3498)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cell signalling, 2872)被用于被用于免疫印迹在人类样本上 (图 6b). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 4223)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上 (图 5). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Commun (2015) ncbi
domestic rabbit 单克隆(5H2)
  • 其他; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于其他在小鼠样本上浓度为1:1000 (图 s1). Front Microbiol (2015) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫沉淀; 人类; 图 6
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 4223)被用于被用于免疫沉淀在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Leukemia (2016) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 2a
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498)被用于被用于免疫印迹在小鼠样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 2827)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, D17C4)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Mol Brain (2015) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2014) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technologies, 4223)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, D55G8)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Ther (2013) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化在人类样本上浓度为1:100. Mod Pathol (2020) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 图 s1a
  • 免疫印迹; 人类; 图 s1a
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, MO887)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1a) 和 被用于免疫印迹在人类样本上 (图 s1a). Cell Death Dis (2020) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 5a
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上 (图 5a). Nat Commun (2020) ncbi
小鼠 单克隆(124)
  • 其他; 人类; 图 4c
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 表 4
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DakoCytomation, 124)被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Ann Hematol (2017) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2e
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2e). Histopathology (2017) ncbi
小鼠 单克隆(124)
  • reverse phase protein lysate microarray; 人类; 图 st6
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, Dako M0887)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st2
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 st2). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(124)
  • reverse phase protein lysate microarray; 人类; 图 3a
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(124)
  • 免疫细胞化学; 人类; 1:100; 图 6b
  • 免疫印迹; 人类; 图 6a
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M088729)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6b) 和 被用于免疫印迹在人类样本上 (图 6a). PLoS Pathog (2017) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 图 2f
  • 免疫组化; 人类; 图 1f
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2f) 和 被用于免疫组化在人类样本上 (图 1f). Ann Diagn Pathol (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Virchows Arch (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 5b,5c,6b,6c,6d
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上 (图 5b,5c,6b,6c,6d). Oncotarget (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 表 2
  • 流式细胞仪; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2) 和 被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Cancer Sci (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:500; 图 5c
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, M0887)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5c). Sci Rep (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Rom J Morphol Embryol (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako Corporation, M0887)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3). Biomed Res Int (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2d
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2d). Nat Commun (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:160; 图 1c
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:160 (图 1c). J Hematop (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 表 4
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Chin J Cancer (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:50; 图 2
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DakoCytomation, M0887)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 6
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(124)
  • 流式细胞仪; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于流式细胞仪在人类样本上 (图 1a). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-冰冻切片; 大鼠; 1:40; 图 3
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:40 (图 3). Ann Anat (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化在人类样本上浓度为1:50 (表 1). Oral Surg Oral Med Oral Pathol Oral Radiol (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:25; 图 s2
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫组化在人类样本上浓度为1:25 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 6b
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化在人类样本上浓度为1:50. Hum Pathol (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:10
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10. APMIS (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Ann Diagn Pathol (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, clone 124)被用于被用于免疫组化在人类样本上. Brain Tumor Pathol (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:75
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:75. Cytopathology (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上 (图 3). Int J Oncol (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化在人类样本上. Pathol Res Pract (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:80
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80. Diagn Pathol (2014) ncbi
小鼠 单克隆(124)
  • 流式细胞仪; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cancer Med (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:600
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKOCytomation, M0887)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600. Anticancer Res (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化在人类样本上浓度为1:40. Head Neck Pathol (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). PLoS ONE (2014) ncbi
小鼠 单克隆(124)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:300. J Biol Chem (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Hum Pathol (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫组化在人类样本上浓度为1:50. Blood Cancer J (2013) ncbi
小鼠 单克隆(124)
  • 流式细胞仪; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, clone 124)被用于被用于流式细胞仪在人类样本上 (表 1). Cytopathology (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上. Laryngoscope (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:600
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKOCytomation, M0887)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600. Oncology (2013) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Hum Pathol (2011) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:30
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DakoCytomation, clone 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30. J Neuropathol Exp Neurol (2008) ncbi
Bioworld
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6g
Bioworld Bcl 2抗体(Bioworld, bs1511)被用于被用于免疫印迹在小鼠样本上 (图 6g). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
Bioworld Bcl 2抗体(Bioworld Technology, BS1511)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:800; 图 6
Bioworld Bcl 2抗体(Bio-World, bs1511)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 6). Mol Med Rep (2016) ncbi
Cell Marque
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
Cell Marque Bcl 2抗体(Cell Marque, 226R-16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Diagn Pathol (2017) ncbi
AmyJet Scientific
小鼠 单克隆(6F11)
  • 免疫印迹; 人类; 图 4d
AmyJet Scientific Bcl 2抗体(AmyJet Scientific, ABM40273)被用于被用于免疫印迹在人类样本上 (图 4d). Biomed Pharmacother (2017) ncbi
碧迪BD
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:1000; 图 4c, 4d, 4g
碧迪BD Bcl 2抗体(BD, 610538)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 4d, 4g). Cell Death Dis (2020) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 人类; 图 3d
碧迪BD Bcl 2抗体(BD Bioscience, Bcl-2/100)被用于被用于流式细胞仪在人类样本上 (图 3d). Methods Mol Biol (2019) ncbi
小鼠 单克隆(4D7)
  • 免疫印迹; 人类; 1:1000; 图 2a
碧迪BD Bcl 2抗体(BD, 551097)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Cell Death Dis (2018) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:500; 图 4b
碧迪BD Bcl 2抗体(BD Pharmingen, 610539)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Mol Med Rep (2017) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 小鼠; 图 1b
碧迪BD Bcl 2抗体(BD Biosciences, 7)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Death Differ (2017) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫组化-石蜡切片; 人类; 图 6b
碧迪BD Bcl 2抗体(BD Biosciences, 610538)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b). Oncotarget (2016) ncbi
仓鼠 单克隆(6C8)
  • 免疫印迹; 人类; 图 5
碧迪BD Bcl 2抗体(BD-Transduction Laboratories, 551052)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 4a
碧迪BD Bcl 2抗体(BD, 610538)被用于被用于免疫印迹在人类样本上 (图 4a). Stem Cells Int (2016) ncbi
  • 流式细胞仪; 人类; 1:10; 表 2
碧迪BD Bcl 2抗体(BD PharMingen, 556535)被用于被用于流式细胞仪在人类样本上浓度为1:10 (表 2). Oncoimmunology (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:500; 图 6
碧迪BD Bcl 2抗体(BD, 610538)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Cell Rep (2016) ncbi
仓鼠 单克隆(6C8)
  • 流式细胞仪; 人类; 图 2
碧迪BD Bcl 2抗体(BD Biosciences, 6C8)被用于被用于流式细胞仪在人类样本上 (图 2). Int Immunol (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 4
碧迪BD Bcl 2抗体(BD Biosciences, 610539)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(Bcl-2/100)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD Bcl 2抗体(BD Bioscience, 551107)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Immunol (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 小鼠; 1:100; 图 6d, 6e
碧迪BD Bcl 2抗体(BD Transduction Laboratories, 610539)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6d, 6e). FEBS Open Bio (2015) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BD Bcl 2抗体(BD Biosciences, 610539)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 猕猴
碧迪BD Bcl 2抗体(BD Biosciences, Bcl2/100)被用于被用于流式细胞仪在猕猴样本上. Vaccine (2015) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 5a,5c
碧迪BD Bcl 2抗体(BD Biosciences, 610538)被用于被用于免疫印迹在人类样本上 (图 5a,5c). Cell Death Dis (2015) ncbi
小鼠 单克隆(4D7)
  • 免疫印迹; 人类; 图 s2b
碧迪BD Bcl 2抗体(BD, 4D7)被用于被用于免疫印迹在人类样本上 (图 s2b). Cell Death Dis (2015) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 5
碧迪BD Bcl 2抗体(BD Biosciences, 610538)被用于被用于免疫印迹在人类样本上 (图 5). Biomed Res Int (2015) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 猕猴
碧迪BD Bcl 2抗体(BD Biosciences, Bcl-2/100)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 人类
碧迪BD Bcl 2抗体(BD, Bcl-2/100)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 人类
碧迪BD Bcl 2抗体(BD Biosciences, Bcl-2/100)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫沉淀; 人类
碧迪BD Bcl 2抗体(BD Transduction Laboratories, 7/Bcl-2)被用于被用于免疫沉淀在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类
碧迪BD Bcl 2抗体(BD Transduction Laboratories, 610539)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类
碧迪BD Bcl 2抗体(BD Transduction Laboratories, 610539)被用于被用于免疫印迹在人类样本上. J Immunother (2014) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:500
碧迪BD Bcl 2抗体(BD Transduction Laboratories, 610538)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(4D7)
  • 免疫印迹; 人类
碧迪BD Bcl 2抗体(BD Biosciences, 551097)被用于被用于免疫印迹在人类样本上. Int J Cancer (2011) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 人类; 1 ug
  • 免疫印迹; 人类
碧迪BD Bcl 2抗体(BD Biosciences, Bcl-2/100)被用于被用于流式细胞仪在人类样本上浓度为1 ug 和 被用于免疫印迹在人类样本上. Cell Death Differ (2008) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化; 人类; 图 3a
徕卡显微系统(上海)贸易有限公司 Bcl 2抗体(Novocastra, bcl-2/100/D5)被用于被用于免疫组化在人类样本上 (图 3a). Histopathology (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2c
徕卡显微系统(上海)贸易有限公司 Bcl 2抗体(Leica Microsystems, BCL2-486)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2c). Vet Comp Oncol (2017) ncbi
西格玛奥德里奇
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 Bcl 2抗体(Sigma, B3170)被用于被用于免疫印迹在人类样本上 (图 8). BMC Complement Altern Med (2016) ncbi
文章列表
  1. Zang N, Cui C, Guo X, Song J, Hu H, Yang M, et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience. 2022;25:105145 pubmed 出版商
  2. Fei X, Wu X, Dou Y, Sun K, Guo Q, Zhang L, et al. TRIM22 orchestrates the proliferation of GBMs and the benefits of TMZ by coordinating the modification and degradation of RIG-I. Mol Ther Oncolytics. 2022;26:413-428 pubmed 出版商
  3. Tao M, Ma H, Fu X, Wang C, Li Y, Hu X, et al. Semaphorin 3F induces colorectal cancer cell chemosensitivity by promoting P27 nuclear export. Front Oncol. 2022;12:899927 pubmed 出版商
  4. Abousaad S, Ahmed F, Abouzeid A, Ongeri E. Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury. Physiol Rep. 2022;10:e15468 pubmed 出版商
  5. Zhang Z, Li P, Sun P. Expression of SAMHD1 and its mutation on prognosis of colon cancer. Oncol Lett. 2022;24:303 pubmed 出版商
  6. Gao H, Sun H, Yan N, Zhao P, Xu H, Zheng W, et al. ATP13A2 Declines Zinc-Induced Accumulation of α-Synuclein in a Parkinson's Disease Model. Int J Mol Sci. 2022;23: pubmed 出版商
  7. Amen A, Loughran R, Huang C, Lew R, Ravi A, Guan Y, et al. Endogenous spacing enables co-processing of microRNAs and efficient combinatorial RNAi. Cell Rep Methods. 2022;2:100239 pubmed 出版商
  8. Narayan S, Raza A, Mahmud I, Koo N, Garrett T, LAW M, et al. Sensitization of FOLFOX-resistant colorectal cancer cells via the modulation of a novel pathway involving protein phosphatase 2A. iScience. 2022;25:104518 pubmed 出版商
  9. Chen J, Chen K, Wang L, Luo J, Zheng Q, He Y. Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy. Cell Death Dis. 2022;13:522 pubmed 出版商
  10. Zhou W, Xu Y, Zhang J, Zhang P, Yao Z, Yan Z, et al. MiRNA-363-3p/DUSP10/JNK axis mediates chemoresistance by enhancing DNA damage repair in diffuse large B-cell lymphoma. Leukemia. 2022;36:1861-1869 pubmed 出版商
  11. Luo H, Song Y, Zhang J, Liu Y, Chen F, Wang Z, et al. MAT2A facilitates PDCD6 methylation and promotes cell growth under glucose deprivation in cervical cancer. Cell Death Discov. 2022;8:176 pubmed 出版商
  12. Hu Q, Liu X, Liu Z, Liu Z, Zhang H, Zhang Q, et al. Dexmedetomidine reduces enteric glial cell injury induced by intestinal ischaemia-reperfusion injury through mitochondrial localization of TERT. J Cell Mol Med. 2022;26:2594-2606 pubmed 出版商
  13. Su Y, Xu J, Gao R, Liu X, Liu T, Li C, et al. The Circ-CYP24A1-miR-224-PRLR Axis Impairs Cell Proliferation and Apoptosis in Recurrent Miscarriage. Front Physiol. 2022;13:778116 pubmed 出版商
  14. Muhammad A, Hao L, Al Kury L, Rehman N, Alvi A, Badshah H, et al. Carveol Promotes Nrf2 Contribution in Depressive Disorders through an Anti-inflammatory Mechanism. Oxid Med Cell Longev. 2022;2022:4509204 pubmed 出版商
  15. He S, Gao Q, Wu X, Shi J, Zhang Y, Yang J, et al. NAD+ ameliorates endotoxin-induced acute kidney injury in a sirtuin1-dependent manner via GSK-3β/Nrf2 signalling pathway. J Cell Mol Med. 2022;26:1979-1993 pubmed 出版商
  16. Xu Y, Chen X, Pan S, Wang Z, Zhu X. TM7SF2 regulates cell proliferation and apoptosis by activation of C-Raf/ERK pathway in cervical cancer. Cell Death Discov. 2021;7:299 pubmed 出版商
  17. Liu W, Feng Q, Liao W, Li E, Wu L. TUG1 promotes the expression of IFITM3 in hepatocellular carcinoma by competitively binding to miR-29a. J Cancer. 2021;12:6905-6920 pubmed 出版商
  18. Fang S, Sun S, Cai H, Zou X, Wang S, Hao X, et al. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1 +/- mice display increases atherosclerotic plaque stability. Theranostics. 2021;11:9358-9375 pubmed 出版商
  19. Ali A, Kuo W, Kuo C, Lo J, Chen M, Daddam J, et al. E3 ligase activity of Carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton's jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med. 2021;6:e10234 pubmed 出版商
  20. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  21. Lü Z, Liu H, Song N, Liang Y, Zhu J, Chen J, et al. METTL14 aggravates podocyte injury and glomerulopathy progression through N6-methyladenosine-dependent downregulating of Sirt1. Cell Death Dis. 2021;12:881 pubmed 出版商
  22. Lee Y, Gil E, Jeong I, Kim H, Jang J, Choung Y. Heat Shock Factor 1 Prevents Age-Related Hearing Loss by Decreasing Endoplasmic Reticulum Stress. Cells. 2021;10: pubmed 出版商
  23. Bhattarai K, Kim H, Chaudhary M, Ur Rashid M, Kim J, Kim H, et al. TMBIM6 regulates redox-associated posttranslational modifications of IRE1α and ER stress response failure in aging mice and humans. Redox Biol. 2021;47:102128 pubmed 出版商
  24. Chiang C, Hong Y. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Sci Rep. 2021;11:18172 pubmed 出版商
  25. Huang J, Xiao R, Wang X, Khadka B, Fang Z, Yu M, et al. MicroRNA‑93 knockdown inhibits acute myeloid leukemia cell growth via inactivating the PI3K/AKT pathway by upregulating DAB2. Int J Oncol. 2021;59: pubmed 出版商
  26. Ji Z, Chen S, Cui J, Huang W, Zhang R, Wei J, et al. Oct4-dependent FoxC1 activation improves the survival and neovascularization of mesenchymal stem cells under myocardial ischemia. Stem Cell Res Ther. 2021;12:483 pubmed 出版商
  27. Liu Y, Zhang Y. Hsa_circ_0134111 promotes osteoarthritis progression by regulating miR-224-5p/CCL1 interaction. Aging (Albany NY). 2021;13:20383-20394 pubmed 出版商
  28. Yan D, Li X, Yang Q, Huang Q, Yao L, Zhang P, et al. Regulation of Bax-dependent apoptosis by mitochondrial deubiquitinase USP30. Cell Death Discov. 2021;7:211 pubmed 出版商
  29. Zhao Z, Szczepanski A, Tsuboyama N, Abdala Valencia H, Goo Y, Singer B, et al. PAX9 Determines Epigenetic State Transition and Cell Fate in Cancer. Cancer Res. 2021;81:4696-4708 pubmed 出版商
  30. Zheleznyak A, Mixdorf M, Marsala L, Prior J, Yang X, Cui G, et al. Orthogonal targeting of osteoclasts and myeloma cells for radionuclide stimulated dynamic therapy induces multidimensional cell death pathways. Theranostics. 2021;11:7735-7754 pubmed 出版商
  31. Meng L, Zhang Y, Li D, Shang X, Hao X, Chen X, et al. TIMP3 attenuates cerebral ischemia/reperfusion-induced apoptosis and oxidative stress in neurocytes by regulating the AKT pathway. Exp Ther Med. 2021;22:973 pubmed 出版商
  32. Oberhardt V, Luxenburger H, Kemming J, Schulien I, Ciminski K, Giese S, et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature. 2021;597:268-273 pubmed 出版商
  33. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  34. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  35. Cho J, Lee J, Kim H, Lee H, Fang Z, Kwon H, et al. Ethyl Acetate Fraction of Amomum villosum var. xanthioides Attenuates Hepatic Endoplasmic Reticulum Stress-Induced Non-Alcoholic Steatohepatitis via Improvement of Antioxidant Capacities. Antioxidants (Basel). 2021;10: pubmed 出版商
  36. Zou S, Gao Y, Zhang S. lncRNA HCP5 acts as a ceRNA to regulate EZH2 by sponging miR‑138‑5p in cutaneous squamous cell carcinoma. Int J Oncol. 2021;59: pubmed 出版商
  37. Li S, Jin H, Sun G, Zhang C, Wang J, Xu H, et al. Dietary Inorganic Nitrate Protects Hepatic Ischemia-Reperfusion Injury Through NRF2-Mediated Antioxidative Stress. Front Pharmacol. 2021;12:634115 pubmed 出版商
  38. Bai Y, Pei W, Zhang X, Zheng H, Hua C, Min J, et al. ApoM is an important potential protective factor in the pathogenesis of primary liver cancer. J Cancer. 2021;12:4661-4671 pubmed 出版商
  39. Hu F, Song D, Yan Y, Huang C, Shen C, Lan J, et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation. Nat Commun. 2021;12:3651 pubmed 出版商
  40. Ma X, Zhao T, Yan H, Guo K, Liu Z, Wei L, et al. Fatostatin reverses progesterone resistance by inhibiting the SREBP1-NF-κB pathway in endometrial carcinoma. Cell Death Dis. 2021;12:544 pubmed 出版商
  41. Wang H, Xiong W, Hang S, Wang Y, Zhang S, Liu S. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation. Aging (Albany NY). 2021;13:15240-15254 pubmed 出版商
  42. Hong H, Jin Z, Qian T, Xu X, Zhu X, Fei Q, et al. Falcarindiol Enhances Cisplatin Chemosensitivity of Hepatocellular Carcinoma via Down-Regulating the STAT3-Modulated PTTG1 Pathway. Front Pharmacol. 2021;12:656697 pubmed 出版商
  43. Li Q, Liu M, Sun Y, Jin T, Zhu P, Wan X, et al. SLC6A8-mediated intracellular creatine accumulation enhances hypoxic breast cancer cell survival via ameliorating oxidative stress. J Exp Clin Cancer Res. 2021;40:168 pubmed 出版商
  44. Yu F, Ma R, Liu C, Zhang L, Feng K, Wang M, et al. SQSTM1/p62 Promotes Cell Growth and Triggers Autophagy in Papillary Thyroid Cancer by Regulating the AKT/AMPK/mTOR Signaling Pathway. Front Oncol. 2021;11:638701 pubmed 出版商
  45. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  46. Park J, Kam T, Lee S, Park H, Oh Y, Kwon S, et al. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:78 pubmed 出版商
  47. Zhou H, Li G, Wang Y, Jiang R, Li Y, Wang H, et al. Microbial Metabolite Sodium Butyrate Attenuates Cartilage Degradation by Restoring Impaired Autophagy and Autophagic Flux in Osteoarthritis Development. Front Pharmacol. 2021;12:659597 pubmed 出版商
  48. Guo J, Zhu H, Li Q, Dong J, Xiong W, Yu K. SPRY4 suppresses proliferation and induces apoptosis of colorectal cancer cells by repressing oncogene EZH2. Aging (Albany NY). 2021;13:11665-11677 pubmed 出版商
  49. Tian F, Zhang Y. Overexpression of SERCA2a Alleviates Cardiac Microvascular Ischemic Injury by Suppressing Mfn2-Mediated ER/Mitochondrial Calcium Tethering. Front Cell Dev Biol. 2021;9:636553 pubmed 出版商
  50. Zhou F, Zou X, Zhang J, Wang Z, Yang Y, Wang D. Jian-Pi-Yi-Shen Formula Ameliorates Oxidative Stress, Inflammation, and Apoptosis by Activating the Nrf2 Signaling in 5/6 Nephrectomized Rats. Front Pharmacol. 2021;12:630210 pubmed 出版商
  51. Cao X, Ma Q, Wang B, Qian Q, Liu N, Liu T, et al. Silencing long non-coding RNA MIAT ameliorates myocardial dysfunction induced by myocardial infarction via MIAT/miR-10a-5p/EGR2 axis. Aging (Albany NY). 2021;13:11188-11206 pubmed 出版商
  52. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  53. Nishad R, Mukhi D, Singh A, Motrapu M, Chintala K, Tammineni P, et al. Growth hormone induces mitotic catastrophe of glomerular podocytes and contributes to proteinuria. Cell Death Dis. 2021;12:342 pubmed 出版商
  54. Liu X, Zhang H, Zhou P, Yu Y, Zhang H, Chen L, et al. CREB1 acts via the miR‑922/ARID2 axis to enhance malignant behavior of liver cancer cells. Oncol Rep. 2021;45: pubmed 出版商
  55. Yin S, Li L, Tao Y, Yu J, Wei S, Liu M, et al. The Inhibitory Effect of Artesunate on Excessive Endoplasmic Reticulum Stress Alleviates Experimental Colitis in Mice. Front Pharmacol. 2021;12:629798 pubmed 出版商
  56. Kim D, Park J, Choi H, Kim C, Bae E, Ma S, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Dis. 2021;12:320 pubmed 出版商
  57. Jin X, Zhu L, Xiao S, Cui Z, Tang J, Yu J, et al. MST1 inhibits the progression of breast cancer by regulating the Hippo signaling pathway and may serve as a prognostic biomarker. Mol Med Rep. 2021;23: pubmed 出版商
  58. Chen W, Wu C, Chen Y, Guo Y, Qiu L, Liu Z, et al. Downregulation of ceramide synthase 1 promotes oral cancer through endoplasmic reticulum stress. Int J Oral Sci. 2021;13:10 pubmed 出版商
  59. Sewastianik T, Straubhaar J, Zhao J, Samur M, Adler K, Tanton H, et al. miR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms. Blood. 2021;137:1905-1919 pubmed 出版商
  60. An J, Yang J, Yao Y, Lu K, Zhao Z, Yu M, et al. Sirtuin 6 regulates the proliferation and survival of clear cell renal cell carcinoma cells via B-cell lymphoma 2. Oncol Lett. 2021;21:293 pubmed 出版商
  61. Jiang X, Shao M, Liu X, Liu X, Zhang X, Wang Y, et al. Reversible Treatment of Pressure Overload-Induced Left Ventricular Hypertrophy through Drd5 Nucleic Acid Delivery Mediated by Functional Polyaminoglycoside. Adv Sci (Weinh). 2021;8:2003706 pubmed 出版商
  62. Xu J, Ma L, Fu P. Eriocitrin attenuates ischemia reperfusion-induced oxidative stress and inflammation in rats with acute kidney injury by regulating the dual-specificity phosphatase 14 (DUSP14)-mediated Nrf2 and nuclear factor-κB (NF-κB) pathways. Ann Transl Med. 2021;9:350 pubmed 出版商
  63. Shao N, Cheng J, Huang H, Gong X, Lu Y, Idris M, et al. GASC1 promotes hepatocellular carcinoma progression by inhibiting the degradation of ROCK2. Cell Death Dis. 2021;12:253 pubmed 出版商
  64. Sripada A, Sirohi K, Michalec L, Guo L, McKay J, Yadav S, et al. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol. 2021;19:e3001063 pubmed 出版商
  65. Wu N, Du X, Peng Z, Zhang Z, Cui L, Li D, et al. Silencing of peroxiredoxin 1 expression ameliorates ulcerative colitis in a rat model. J Int Med Res. 2021;49:300060520986313 pubmed 出版商
  66. Luo Y, Niu G, Yi H, Li Q, Wu Z, Wang J, et al. Nanomedicine promotes ferroptosis to inhibit tumour proliferation in vivo. Redox Biol. 2021;42:101908 pubmed 出版商
  67. Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, et al. Anti-EGFR VHH-armed death receptor ligand-engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Sci Adv. 2021;7: pubmed 出版商
  68. Cheng Y, Liu M, Tang H, Chen B, Yang G, Zhao W, et al. iTRAQ-Based Quantitative Proteomics Indicated Nrf2/OPTN-Mediated Mitophagy Inhibits NLRP3 Inflammasome Activation after Intracerebral Hemorrhage. Oxid Med Cell Longev. 2021;2021:6630281 pubmed 出版商
  69. Diao L, Zhang Q. Transfer of lncRNA UCA1 by hUCMSCs-derived exosomes protects against hypoxia/reoxygenation injury through impairing miR-143-targeted degradation of Bcl-2. Aging (Albany NY). 2021;13:5967-5985 pubmed 出版商
  70. Chen F, Xu B, Li J, Yang X, Gu J, Yao X, et al. Hypoxic tumour cell-derived exosomal miR-340-5p promotes radioresistance of oesophageal squamous cell carcinoma via KLF10. J Exp Clin Cancer Res. 2021;40:38 pubmed 出版商
  71. Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol. 2021;40:101859 pubmed 出版商
  72. Zhang K, Wang D, Cai H, Cao M, Zhang Y, Zhuang P, et al. IL‑6 plays a crucial role in epithelial‑mesenchymal transition and pro‑metastasis induced by sorafenib in liver cancer. Oncol Rep. 2021;45:1105-1117 pubmed 出版商
  73. Deng X, He Y, Miao X, Yu B. ATF4-mediated histone deacetylase HDAC1 promotes the progression of acute pancreatitis. Cell Death Dis. 2021;12:5 pubmed 出版商
  74. Xiao L, Sharma V, Toulabi L, Yang X, Lee C, Abebe D, et al. Neurotrophic factor-α1, a novel tropin is critical for the prevention of stress-induced hippocampal CA3 cell death and cognitive dysfunction in mice: comparison to BDNF. Transl Psychiatry. 2021;11:24 pubmed 出版商
  75. Ao H, Li H, Zhao X, Liu B, Lu L. TXNIP positively regulates the autophagy and apoptosis in the rat müller cell of diabetic retinopathy. Life Sci. 2021;267:118988 pubmed 出版商
  76. Wen Y, Hou Y, Yi X, Sun S, Guo J, He X, et al. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics. 2021;11:1795-1813 pubmed 出版商
  77. Li Z, Meng Y, Liu C, Liu H, Cao W, Tong C, et al. Kcnh2 mediates FAK/AKT-FOXO3A pathway to attenuate sepsis-induced cardiac dysfunction. Cell Prolif. 2021;54:e12962 pubmed 出版商
  78. Omairi I, Kobeissy F, Nasreddine S. Anti-Oxidant, Anti-Hemolytic Effects of Crataegus aronia Leaves and Its Anti- Proliferative Effect Enhance Cisplatin Cytotoxicity in A549 Human Lung Cancer Cell Line. Asian Pac J Cancer Prev. 2020;21:2993-3003 pubmed 出版商
  79. Tang S, Wu W, Wan H, Wu X, Chen H. Knockdown of NHP2 inhibits hepatitis B virus X protein-induced hepatocarcinogenesis via repressing TERT expression and disrupting the stability of telomerase complex. Aging (Albany NY). 2020;12:19365-19374 pubmed 出版商
  80. Wang T, Gao X, Zhou K, Jiang T, Gao S, Liu P, et al. Role of ARID1A in epithelial‑mesenchymal transition in breast cancer and its effect on cell sensitivity to 5‑FU. Int J Mol Med. 2020;46:1683-1694 pubmed 出版商
  81. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  82. Meng L, Teng X, Liu Y, Yang C, Wang S, Yuan W, et al. Vital Roles of Gremlin-1 in Pulmonary Arterial Hypertension Induced by Systemic-to-Pulmonary Shunts. J Am Heart Assoc. 2020;9:e016586 pubmed 出版商
  83. Au C, Furness J, Britt K, Oshchepkova S, Ladumor H, Soo K, et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. elife. 2020;9: pubmed 出版商
  84. Gu J, Zhang Y, Wang X, Xiang J, Deng S, Wu D, et al. Matrine inhibits the growth of natural killer/T-cell lymphoma cells by modulating CaMKIIγ-c-Myc signaling pathway. BMC Complement Med Ther. 2020;20:214 pubmed 出版商
  85. Mamriev D, Abbas R, Klingler F, Kagan J, Kfir N, Donald A, et al. A small-molecule ARTS mimetic promotes apoptosis through degradation of both XIAP and Bcl-2. Cell Death Dis. 2020;11:483 pubmed 出版商
  86. Christgen M, Bartels S, van Luttikhuizen J, Bublitz J, Rieger L, Christgen H, et al. E-cadherin to P-cadherin switching in lobular breast cancer with tubular elements. Mod Pathol. 2020;33:2483-2498 pubmed 出版商
  87. Yin S, Song M, Zhao R, Liu X, Kang W, Lee J, et al. Xanthohumol Inhibits the Growth of Keratin 18-Overexpressed Esophageal Squamous Cell Carcinoma in vitro and in vivo. Front Cell Dev Biol. 2020;8:366 pubmed 出版商
  88. Wang X, Tong J, Han X, Qi X, Zhang J, Wu E, et al. Acute effects of human protein S administration after traumatic brain injury in mice. Neural Regen Res. 2020;15:2073-2081 pubmed 出版商
  89. Vu M, Kassouf N, Ofili R, Lund T, Bell C, Appiah S. Doxorubicin selectively induces apoptosis through the inhibition of a novel isoform of Bcl‑2 in acute myeloid leukaemia MOLM‑13 cells with reduced Beclin 1 expression. Int J Oncol. 2020;57:113-121 pubmed 出版商
  90. Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;: pubmed 出版商
  91. Chen S, Zhang H, Li J, Shi J, Tang H, Zhang Y, et al. Tripartite Motif-Containing 27 Attenuates Liver Ischemia/Reperfusion Injury by Suppressing Transforming Growth Factor β-Activated Kinase 1 (TAK1) by TAK1 Binding Protein 2/3 Degradation. Hepatology. 2021;73:738-758 pubmed 出版商
  92. Wu X, Gardashova G, Lan L, Han S, Zhong C, Marquez R, et al. Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Commun Biol. 2020;3:193 pubmed 出版商
  93. Zhao J, Li G, Zhao X, Lin X, Gao Y, Raimundo N, et al. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY). 2020;12:5590-5611 pubmed 出版商
  94. Han B, Meng X, Wu P, Li Z, Li S, Zhang Y, et al. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics. 2020;10:3351-3365 pubmed 出版商
  95. Feng C, Zhang H, Zeng A, Bai M, Wang X. Tumor-Suppressive MicroRNA-216b Binds to TPX2, Activating the p53 Signaling in Human Cutaneous Squamous Cell Carcinoma. Mol Ther Nucleic Acids. 2020;20:186-195 pubmed 出版商
  96. Zhao J, He L, Yin L. lncRNA NEAT1 Binds to MiR-339-5p to Increase HOXA1 and Alleviate Ischemic Brain Damage in Neonatal Mice. Mol Ther Nucleic Acids. 2020;20:117-127 pubmed 出版商
  97. Bajpai R, Sharma A, Achreja A, Edgar C, Wei C, Siddiqa A, et al. Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat Commun. 2020;11:1228 pubmed 出版商
  98. Gao Y, Dai X, Li Y, Li G, Lin X, Ai C, et al. Role of Parkin-mediated mitophagy in the protective effect of polydatin in sepsis-induced acute kidney injury. J Transl Med. 2020;18:114 pubmed 出版商
  99. Xiang Q, Kang L, Wang J, Liao Z, Song Y, Zhao K, et al. CircRNA-CIDN mitigated compression loading-induced damage in human nucleus pulposus cells via miR-34a-5p/SIRT1 axis. EBioMedicine. 2020;53:102679 pubmed 出版商
  100. Chen Y, Liu Z, Wang Y, Zhuang J, Peng Y, Mo X, et al. FKBP51 induces p53-dependent apoptosis and enhances drug sensitivity of human non-small-cell lung cancer cells. Exp Ther Med. 2020;19:2236-2242 pubmed 出版商
  101. Castro Gonzalez S, Shi Y, Colomer Lluch M, Song Y, Mowery K, Almodovar S, et al. HIV-1 Nef counteracts autophagy restriction by enhancing the association between BECN1 and its inhibitor BCL2 in a PRKN-dependent manner. Autophagy. 2020;:1-25 pubmed 出版商
  102. Wan G, An Y, Tao J, Wang Y, Zhou Q, Yang R, et al. MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep. 2020;40: pubmed 出版商
  103. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  104. Guttà C, Rahman A, Aura C, Dynoodt P, Charles E, Hirschenhahn E, et al. Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma. Cell Death Dis. 2020;11:124 pubmed 出版商
  105. Huang S, Zhang C, Sun C, Hou Y, Zhang Y, Tam N, et al. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging (Albany NY). 2020;12:3025-3041 pubmed 出版商
  106. Zhuang K, Zuo Y, Sherchan P, Wang J, Yan X, Liu F. Hydrogen Inhalation Attenuates Oxidative Stress Related Endothelial Cells Injury After Subarachnoid Hemorrhage in Rats. Front Neurosci. 2019;13:1441 pubmed 出版商
  107. Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. Drug Des Devel Ther. 2020;14:129-143 pubmed 出版商
  108. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  109. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  110. Li C, Liu W, Li X, Zhang Z, Qi H, Liu S, et al. The novel GLP-1/GIP analogue DA5-CH reduces tau phosphorylation and normalizes theta rhythm in the icv. STZ rat model of AD. Brain Behav. 2020;10:e01505 pubmed 出版商
  111. Molagoda I, Lee K, Choi Y, Kim G. Anthocyanins from Hibiscus syriacus L. Inhibit Oxidative Stress-Mediated Apoptosis by Activating the Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel). 2020;9: pubmed 出版商
  112. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, et al. Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res. 2020;45:837-850 pubmed 出版商
  113. Lohard S, Bourgeois N, Maillet L, Gautier F, Fétiveau A, Lasla H, et al. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat Commun. 2020;11:259 pubmed 出版商
  114. Sheng L, Zhang J, Li L, Xie X, Wen X, Cheng K. Design, Synthesis, and Evaluation of Novel 2-Methoxyestradiol Derivatives as Apoptotic Inducers Through an Intrinsic Apoptosis Pathway. Biomolecules. 2020;10: pubmed 出版商
  115. Chen X, Zhao Y, Xu J, Bao J, Zhao J, Chen J, et al. The Nephroprotective Effect of TNF Receptor-Associated Factor 6 (TRAF6) Blockade on LPS-Induced Acute Renal Injury Through the Inhibition if Inflammation and Oxidative Stress. Med Sci Monit. 2020;26:e919698 pubmed 出版商
  116. Zhou Z, Zhou Q, Wu X, Xu S, Hu X, Tao X, et al. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 2020;473:62-73 pubmed 出版商
  117. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  118. Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer. 2019;19:1157 pubmed 出版商
  119. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  120. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  121. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  122. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  123. Tian M, Gong W, Guo J. Long non-coding RNA SNHG1 indicates poor prognosis and facilitates disease progression in acute myeloid leukemia. Biol Open. 2019;8: pubmed 出版商
  124. Garc a Arroyo F, Monroy S nchez F, Mu oz Jim nez I, Gonzaga G, Andr s Hernando A, Zazueta C, et al. Allopurinol Prevents the Lipogenic Response Induced by an Acute Oral Fructose Challenge in Short-Term Fructose Fed Rats. Biomolecules. 2019;9: pubmed 出版商
  125. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  126. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11:7830-7846 pubmed 出版商
  127. Shan L, Liu W, Zhan Y. Sulfated polysaccharide of Sepiella maindroni ink targets Akt and overcomes resistance to the FGFR inhibitor AZD4547 in bladder cancer. Aging (Albany NY). 2019;11:7780-7795 pubmed 出版商
  128. Chollat Namy M, Ben Safta Saadoun T, Haferssas D, Meurice G, Chouaib S, Thiery J. The pharmalogical reactivation of p53 function improves breast tumor cell lysis by granzyme B and NK cells through induction of autophagy. Cell Death Dis. 2019;10:695 pubmed 出版商
  129. Barbero G, Castro M, Villanueva M, Quezada M, Fernández N, Demorrow S, et al. An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells. 2019;8: pubmed 出版商
  130. Yan P, Su Z, Zhang Z, Gao T. LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR‑9‑5p and regulating SPAG9 expression. Int J Oncol. 2019;55:988-1002 pubmed 出版商
  131. Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules. 2019;9: pubmed 出版商
  132. Gao L, Wang Z, Lu D, Huang J, Liu J, Hong L. Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis. 2019;10:609 pubmed 出版商
  133. Wang X, Peng P, Pan Z, Fang Z, Lu W, Liu X. Psoralen inhibits malignant proliferation and induces apoptosis through triggering endoplasmic reticulum stress in human SMMC7721 hepatoma cells. Biol Res. 2019;52:34 pubmed 出版商
  134. Kaur S, Nag A, Gangenahalli G, Sharma K. Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Front Genet. 2019;10:554 pubmed 出版商
  135. Zhang L, Feng Q, Wang Z, Liu P, Cui S. Progesterone receptor antagonist provides palliative effects for uterine leiomyoma through a Bcl-2/Beclin1-dependent mechanism. Biosci Rep. 2019;39: pubmed 出版商
  136. Roy N, Monisha J, Padmavathi G, Lalhruaitluanga H, Kumar N, Singh A, et al. Isoform-Specific Role of Akt in Oral Squamous Cell Carcinoma. Biomolecules. 2019;9: pubmed 出版商
  137. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  138. Hou N, He X, Yang Y, Fu J, Zhang W, Guo Z, et al. TRPV1 Induced Apoptosis of Colorectal Cancer Cells by Activating Calcineurin-NFAT2-p53 Signaling Pathway. Biomed Res Int. 2019;2019:6712536 pubmed 出版商
  139. Donadoni M, Cicalese S, Sarkar D, Chang S, Sariyer I. Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death Dis. 2019;10:447 pubmed 出版商
  140. Wu K, Zou J, Lin C, Jie Z. MicroRNA-140-5p inhibits cell proliferation, migration and promotes cell apoptosis in gastric cancer through the negative regulation of THY1-mediated Notch signaling. Biosci Rep. 2019;: pubmed 出版商
  141. Sul O, Rajasekaran M, Park H, Suh J, Choi H. MicroRNA-29b Enhances Osteoclast Survival by Targeting BCL-2-Modifying Factor after Lipopolysaccharide Stimulation. Oxid Med Cell Longev. 2019;2019:6018180 pubmed 出版商
  142. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  143. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  144. Zhang C, Zhu Q, Gu J, Chen S, Li Q, Ying L. Down-regulation of CCNE1 expression suppresses cell proliferation and sensitizes gastric carcinoma cells to Cisplatin. Biosci Rep. 2019;39: pubmed 出版商
  145. He M, Chaurushiya M, Webster J, Kummerfeld S, Reja R, Chaudhuri S, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science. 2019;364:283-285 pubmed 出版商
  146. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  147. You Y, Qin Z, Zhang H, Yuan Z, Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep. 2019;: pubmed 出版商
  148. Rong X, Rao J, Li D, Jing Q, Lu Y, Ji Y. TRIM69 inhibits cataractogenesis by negatively regulating p53. Redox Biol. 2019;22:101157 pubmed 出版商
  149. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  150. Thompson P, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29:1045-1060.e10 pubmed 出版商
  151. Dong H, Ye X, Zhong L, Xu J, Qiu J, Wang J, et al. Role of FOXO3 Activated by HIV-1 Tat in HIV-Associated Neurocognitive Disorder Neuronal Apoptosis. Front Neurosci. 2019;13:44 pubmed 出版商
  152. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  153. Wang Y, Qi Z, Zhou M, Yang W, Hu R, Li G, et al. Stanniocalcin‑1 promotes cell proliferation, chemoresistance and metastasis in hypoxic gastric cancer cells via Bcl‑2. Oncol Rep. 2019;41:1998-2008 pubmed 出版商
  154. Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y, et al. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol. 2019;: pubmed 出版商
  155. Li Z, Mbah N, Overmeyer J, Sarver J, George S, Trabbic C, et al. The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer. 2019;19:77 pubmed 出版商
  156. Huang X, Zhao Y, Pu Q, Liu G, Peng Y, Wang F, et al. Intracellular selection of trans-cleaving hammerhead ribozymes. Nucleic Acids Res. 2019;47:2514-2522 pubmed 出版商
  157. Wysokińska E, Cichos J, Kowalczyk A, Karbowiak M, Strzadała L, Bednarkiewicz A, et al. Toxicity Mechanism of Low Doses of NaGdF₄:Yb3+,Er3+ Upconverting Nanoparticles in Activated Macrophage Cell Lines. Biomolecules. 2019;9: pubmed 出版商
  158. Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, et al. Cardiomyocyte-specific loss of RMP causes myocardial dysfunction and heart failure. Cardiovasc Res. 2018;: pubmed 出版商
  159. LeBlanc L, Lee B, Yu A, Kim M, Kambhampati A, Dupont S, et al. Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. elife. 2018;7: pubmed 出版商
  160. Smith M, Tahir S. Quantification of BCL-2 Family Members by Flow Cytometry. Methods Mol Biol. 2019;1877:163-172 pubmed 出版商
  161. Liang C, Ma Y, Yong L, Yang C, Wang P, Liu X, et al. Y-box binding protein-1 promotes tumorigenesis and progression via the epidermal growth factor receptor/AKT pathway in spinal chordoma. Cancer Sci. 2019;110:166-179 pubmed 出版商
  162. Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol. 2019;20:261-274 pubmed 出版商
  163. De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui A, Saha S, et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem. 2018;293:19740-19760 pubmed 出版商
  164. Wu R, Yang H, Wan J, Deng X, Chen L, Hao S, et al. Knockdown of the Hippo transducer YAP reduces proliferation and promotes apoptosis in the Jurkat leukemia cell. Mol Med Rep. 2018;18:5379-5388 pubmed 出版商
  165. Li W, Yue F, Dai Y, Shi B, Xu G, Jiang X, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation. Cell Death Differ. 2018;: pubmed 出版商
  166. Zhao H, Pan W, Chen L, Luo Y, Xu R. Nur77 promotes cerebral ischemia-reperfusion injury via activating INF2-mediated mitochondrial fragmentation. J Mol Histol. 2018;49:599-613 pubmed 出版商
  167. Park J, Lee J, Sheu K, Wang L, Balanis N, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91-95 pubmed 出版商
  168. Yue D, Sun X. Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis. 2018;9:935 pubmed 出版商
  169. Greenhough A, Bagley C, Heesom K, Gurevich D, Gay D, Bond M, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med. 2018;10: pubmed 出版商
  170. Pearce M, Gamble J, Kopparapu P, O Donnell E, Mueller M, Jang H, et al. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget. 2018;9:26072-26085 pubmed 出版商
  171. LI Y, Du L, Aldana Masangkay G, Wang X, Urak R, Forman S, et al. Regulation of miR-34b/c-targeted gene expression program by SUMOylation. Nucleic Acids Res. 2018;: pubmed 出版商
  172. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  173. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  174. Pan B, Wu L, Pan L, Yang Y, Li H, Dai Y, et al. Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway. Biosci Rep. 2018;38: pubmed 出版商
  175. Wang J, Wang F, Zhu J, Song M, An J, Li W. Transcriptome Profiling Reveals PHLDA1 as a Novel Molecular Marker for Ischemic Cardiomyopathy. J Mol Neurosci. 2018;65:102-109 pubmed 出版商
  176. Han F, Xia X, Dou M, Wang Y, Xue W, Ding X, et al. Arctigenin: A two-edged sword in ischemia/reperfusion induced acute kidney injury. Biomed Pharmacother. 2018;103:1127-1136 pubmed 出版商
  177. Xiao G, Chan L, Klemm L, Braas D, Chen Z, Geng H, et al. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell. 2018;173:470-484.e18 pubmed 出版商
  178. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  179. Yang R, Tao Z, Huang M, Zheng Y, Dai M, Zou Y, et al. Knockout of the placenta specific 8 gene radiosensitizes nasopharyngeal carcinoma cells by activating the PI3K/AKT/GSK3β pathway. Am J Transl Res. 2018;10:455-464 pubmed
  180. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  181. Tan X, Banerjee P, Liu X, Yu J, Gibbons D, Wu P, et al. The epithelial-to-mesenchymal transition activator ZEB1 initiates a prometastatic competing endogenous RNA network. J Clin Invest. 2018;128:1267-1282 pubmed 出版商
  182. Bogenberger J, Whatcott C, Hansen N, Delman D, Shi C, Kim W, et al. Combined venetoclax and alvocidib in acute myeloid leukemia. Oncotarget. 2017;8:107206-107222 pubmed 出版商
  183. Zhao X, Huang L, Xu W, Chen X, Shen Y, Zeng W, et al. Physapubescin B inhibits tumorgenesis and circumvents taxol resistance of ovarian cancer cells through STAT3 signaling. Oncotarget. 2017;8:70130-70141 pubmed 出版商
  184. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  185. Shimono J, Miyoshi H, Kamimura T, Eto T, Miyagishima T, Sasaki Y, et al. Clinicopathological features of primary splenic follicular lymphoma. Ann Hematol. 2017;96:2063-2070 pubmed 出版商
  186. Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, et al. Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget. 2017;8:58231-58246 pubmed 出版商
  187. Vu L, Pickering B, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369-1376 pubmed 出版商
  188. Yu J, Wu H, Liu Z, Zhu Q, Shan C, Zhang K. Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation. Int J Mol Med. 2017;40:1185-1193 pubmed 出版商
  189. Rocchi A, Yamamoto S, Ting T, Fan Y, SADLEIR K, Wang Y, et al. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet. 2017;13:e1006962 pubmed 出版商
  190. Zhang Y, Chen P, Hong H, Wang L, Zhou Y, Lang Y. JNK pathway mediates curcumin-induced apoptosis and autophagy in osteosarcoma MG63 cells. Exp Ther Med. 2017;14:593-599 pubmed 出版商
  191. Patel N, Garikapati K, Pandita R, Singh D, Pandita T, Bhadra U, et al. miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin. Sci Rep. 2017;7:4263 pubmed 出版商
  192. Verdanet E, Dereure O, René C, Tempier A, Benammar Hafidi A, Gallo M, et al. Diagnostic value of STMN1, LMO2, HGAL, AID expression and 1p36 chromosomal abnormalities in primary cutaneous B cell lymphomas. Histopathology. 2017;71:648-660 pubmed 出版商
  193. Angori S, Capanni C, Faulkner G, Bean C, Boriani G, Lattanzi G, et al. Emery-Dreifuss Muscular Dystrophy-Associated Mutant Forms of Lamin A Recruit the Stress Responsive Protein Ankrd2 into the Nucleus, Affecting the Cellular Response to Oxidative Stress. Cell Physiol Biochem. 2017;42:169-184 pubmed 出版商
  194. Zhang Z, Huang A, Zhang A, Zhou C. HuR promotes breast cancer cell proliferation and survival via binding to CDK3 mRNA. Biomed Pharmacother. 2017;91:788-795 pubmed 出版商
  195. Yue X, Zuo Y, Ke H, Luo J, Lou L, Qin W, et al. Identification of 4-arylidene curcumin analogues as novel proteasome inhibitors for potential anticancer agents targeting 19S regulatory particle associated deubiquitinase. Biochem Pharmacol. 2017;137:29-50 pubmed 出版商
  196. Xie Y, Ma W, Meng J, Ren X. Knockdown of ZFPL1 results in increased autophagy and autophagy‑related cell death in NCI‑N87 and BGC‑823 human gastric carcinoma cell lines. Mol Med Rep. 2017;15:2633-2642 pubmed 出版商
  197. Liu Y, Chen X, Li J. Resveratrol protects against oxidized low‑density lipoprotein‑induced human umbilical vein endothelial cell apoptosis via inhibition of mitochondrial‑derived oxidative stress. Mol Med Rep. 2017;15:2457-2464 pubmed 出版商
  198. Lian W, Zhang L, Yang L, Chen W. AP-2α reverses vincristine-induced multidrug resistance of SGC7901 gastric cancer cells by inhibiting the Notch pathway. Apoptosis. 2017;22:933-941 pubmed 出版商
  199. Lee T, Pelletier J. Dependence of p53-deficient cells on the DHX9 DExH-box helicase. Oncotarget. 2017;8:30908-30921 pubmed 出版商
  200. Sun J, Zhang X, Sun Y, Tang Z, Guo D. Effects of Hylomecon vernalis ethanol extracts on cell cycle and apoptosis of colon cancer cells. Mol Med Rep. 2017;15:3485-3492 pubmed 出版商
  201. Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887-899 pubmed
  202. Jelinek M, Kabelova A, Srámek J, Seitz J, Ojima I, Kovar J. Differing Mechanisms of Death Induction by Fluorinated Taxane SB-T-12854 in Breast Cancer Cells. Anticancer Res. 2017;37:1581-1590 pubmed
  203. Paterniti I, Campolo M, Siracusa R, Cordaro M, Di Paola R, Calabrese V, et al. Liver X receptors activation, through TO901317 binding, reduces neuroinflammation in Parkinson's disease. PLoS ONE. 2017;12:e0174470 pubmed 出版商
  204. Ji X, Pan C, Li X, Gao Y, Xia L, Quan X, et al. Trametes robiniophila may induce apoptosis and inhibit MMPs expression in the human gastric carcinoma cell line MKN-45. Oncol Lett. 2017;13:841-846 pubmed 出版商
  205. Yokoyama T, Kohn E, Brill E, Lee J. Apoptosis is augmented in high-grade serous ovarian cancer by the combined inhibition of Bcl-2/Bcl-xL and PARP. Int J Oncol. 2017;: pubmed 出版商
  206. Mytych J, Romerowicz Misielak M, Koziorowski M. Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicol In Vitro. 2017;42:1-9 pubmed 出版商
  207. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  208. Tian Y, Wu X, Guo S, Ma L, Huang W, Zhao X. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2. Int J Mol Med. 2017;39:869-878 pubmed 出版商
  209. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  210. Zhang H, Wang Y, Liu Z, Yao B, Dou C, Xu M, et al. Lymphocyte-specific protein 1 inhibits the growth of hepatocellular carcinoma by suppressing ERK1/2 phosphorylation. FEBS Open Bio. 2016;6:1227-1237 pubmed 出版商
  211. Cen M, Hu P, Cai Z, Fang T, Zhang J, Lu M. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med. 2017;39:569-578 pubmed 出版商
  212. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  213. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  214. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  215. Jeffery H, Jeffery L, Lutz P, Corrigan M, Webb G, Hirschfield G, et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol. 2017;188:394-411 pubmed 出版商
  216. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  217. Li M, Yuan Y, Hu B, Wu L. Study on Lentivirus-Mediated ABCA7 Improves Neurocognitive Function and Related Mechanisms in the C57BL/6 Mouse Model of Alzheimer's Disease. J Mol Neurosci. 2017;61:489-497 pubmed 出版商
  218. Cai L, Wang H, Yang Q. CRKL overexpression promotes cell proliferation and inhibits apoptosis in endometrial carcinoma. Oncol Lett. 2017;13:51-56 pubmed 出版商
  219. Choi I, Hwang L, Jin J, Ko I, Kim S, Shin M, et al. Dexmedetomidine alleviates cerebral ischemia-induced short-term memory impairment by inhibiting the expression of apoptosis-related molecules in the hippocampus of gerbils. Exp Ther Med. 2017;13:107-116 pubmed 出版商
  220. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  221. Huang Y, Chen N, Miao D. Radioprotective effects of pyrroloquinoline quinone on parotid glands in C57BL/6J mice. Exp Ther Med. 2016;12:3685-3693 pubmed 出版商
  222. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  223. Candanedo Gonzalez F, Ortiz Arce C, Rosales Perez S, Remirez Castellanos A, Cordova Uscanga C, Gamboa Dominguez A. Immunohistochemical features of giant cell ependymoma of the filum terminale with unusual clinical and radiological presentation. Diagn Pathol. 2017;12:7 pubmed 出版商
  224. Schenk R, Tuzlak S, Carrington E, Zhan Y, Heinzel S, Teh C, et al. Characterisation of mice lacking all functional isoforms of the pro-survival BCL-2 family member A1 reveals minor defects in the haematopoietic compartment. Cell Death Differ. 2017;24:534-545 pubmed 出版商
  225. Silva B, Barbosa M, Andrade P, Ferreira H, Nery J, Corte Real S, et al. Autophagy Is an Innate Mechanism Associated with Leprosy Polarization. PLoS Pathog. 2017;13:e1006103 pubmed 出版商
  226. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  227. Mytych J, Wos I, Solek P, Koziorowski M. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res. 2017;350:358-367 pubmed 出版商
  228. Ren Z, Aerts J, Vandenplas H, Wang J, Gorbenko O, Chen J, et al. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis. 2016;7:e2560 pubmed 出版商
  229. Li Y, Buijs Gladdines J, Cant Barrett K, Stubbs A, Vroegindeweij E, Smits W, et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med. 2016;13:e1002200 pubmed 出版商
  230. Xiao F, Zhang J, Zhang C, An W. Hepatic stimulator substance inhibits calcium overflow through the mitochondria-associated membrane compartment during nonalcoholic steatohepatitis. Lab Invest. 2017;97:289-301 pubmed 出版商
  231. Ohs I, Van Den Broek M, Nussbaum K, MUNZ C, Arnold S, Quezada S, et al. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nat Commun. 2016;7:13708 pubmed 出版商
  232. Sasaki C, Toman J, Vageli D. The In Vitro Effect of Acidic-Pepsin on Nuclear Factor KappaB Activation and Its Related Oncogenic Effect on Normal Human Hypopharyngeal Cells. PLoS ONE. 2016;11:e0168269 pubmed 出版商
  233. Kattaia A, Abd El Baset S, Mohamed E, Abdul Maksou R, Elfakharany Y. Molecular mechanisms underlying histological and biochemical changes induced by nitrate in rat liver and the efficacy of S-Allylcysteine. Ultrastruct Pathol. 2017;41:10-22 pubmed 出版商
  234. Suzuki J, Nakajima W, Suzuki H, Asano Y, Tanaka N. Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun. 2017;482:1334-1340 pubmed 出版商
  235. Yu G, Dou Z, Jia Z. 5?bromo?3?(3?hydroxyprop?1?ynyl)?2H?pyran?2?one induces apoptosis in T24 human bladder cancer cells through mitochondria-dependent signaling pathways. Mol Med Rep. 2017;15:153-159 pubmed 出版商
  236. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  237. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  238. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  239. Zhu X, Wang K, Zhang K, Zhang T, Yin Y, Xu F. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis. Int J Mol Sci. 2016;17: pubmed
  240. Singh A, Agrahari A, Singh R, Yadav S, Srivastava V, Parmar D. Imprinting of cerebral cytochrome P450s in offsprings prenatally exposed to cypermethrin augments toxicity on rechallenge. Sci Rep. 2016;6:37426 pubmed 出版商
  241. Martínez Castillo M, Bonilla Moreno R, Alemán Lazarini L, Meraz Rios M, Orozco L, Cedillo Barron L, et al. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe. PLoS ONE. 2016;11:e0165971 pubmed 出版商
  242. Carreras J, Kikuti Y, Bea S, Miyaoka M, Hiraiwa S, Ikoma H, et al. Clinicopathological characteristics and genomic profile of primary sinonasal tract diffuse large B cell lymphoma (DLBCL) reveals gain at 1q31 and RGS1 encoding protein; high RGS1 immunohistochemical expression associates with poor overall survival in. Histopathology. 2017;70:595-621 pubmed 出版商
  243. Dey K, Bharti R, Dey G, Pal I, Rajesh Y, Chavan S, et al. S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway. Cancer Gene Ther. 2016;23:382-391 pubmed 出版商
  244. Huang M, Garcia J, Thomas D, Zhu L, Nguyen L, Chan S, et al. Autophagy mediates proteolysis of NPM1 and HEXIM1 and sensitivity to BET inhibition in AML cells. Oncotarget. 2016;7:74917-74930 pubmed 出版商
  245. Alexander Savino C, Hayden M, Richardson C, Zhao J, Poligone B. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells. Oncotarget. 2016;7:75954-75967 pubmed 出版商
  246. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed 出版商
  247. Zhan Y, Mou L, Cheng K, Wang C, Deng X, Chen J, et al. Hepatocellular carcinoma stem cell-like cells are enriched following low-dose 5-fluorouracil chemotherapy. Oncol Lett. 2016;12:2511-2516 pubmed
  248. Xu Y, Ding G, Huang J, Xiong Y. Tanshinone IIA pretreatment attenuates ischemia/reperfusion-induced renal injury. Exp Ther Med. 2016;12:2741-2746 pubmed
  249. Schubert C, Raparelli V, Westphal C, Dworatzek E, Petrov G, Kararigas G, et al. Reduction of apoptosis and preservation of mitochondrial integrity under ischemia/reperfusion injury is mediated by estrogen receptor ?. Biol Sex Differ. 2016;7:53 pubmed 出版商
  250. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  251. Soon G, Ow G, Chan H, Ng S, Wang S. Primary cardiac diffuse large B-cell lymphoma in immunocompetent patients: clinical, histologic, immunophenotypic, and genotypic features of 3 cases. Ann Diagn Pathol. 2016;24:40-6 pubmed 出版商
  252. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  253. Ranjan K, Pathak C. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death. Mol Cell Biochem. 2016;422:135-150 pubmed
  254. Gallo M, Cacheux V, Vincent L, Bret C, Tempier A, Guittard C, et al. Leukemic non-nodal mantle cell lymphomas have a distinct phenotype and are associated with deletion of PARP1 and 13q14. Virchows Arch. 2016;469:697-706 pubmed
  255. Lee J, Jung H, Han Y, Yoon Y, Yun C, Sun H, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep. 2016;14:3777-84 pubmed 出版商
  256. Peng Y, Miao H, Wu S, Yang W, Zhang Y, Xie G, et al. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy. 2016;12:2167-2182 pubmed
  257. Cheng S, Jiang X, Ding C, Du C, Owusu Ansah K, Weng X, et al. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma. Int J Mol Sci. 2016;17: pubmed 出版商
  258. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  259. Pomares H, Palmeri C, Iglesias Serret D, Moncunill Massaguer C, Saura Esteller J, Núñez Vázquez S, et al. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells. Oncotarget. 2016;7:64987-65000 pubmed 出版商
  260. Wang H, Li M, Hung C, Sinha M, Lee L, Wiesner D, et al. MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase. PLoS Pathog. 2016;12:e1005787 pubmed 出版商
  261. Liu Y, Wang Y, Ding G, Yang T, Yao L, Hua J, et al. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway. Onco Targets Ther. 2016;9:4425-33 pubmed 出版商
  262. Weyhenmeyer B, Noonan J, Würstle M, Lincoln F, Johnston G, Rehm M, et al. Predicting the cell death responsiveness and sensitization of glioma cells to TRAIL and temozolomide. Oncotarget. 2016;7:61295-61311 pubmed 出版商
  263. Shen H, Zhao L, Feng X, Xu C, Li C, Niu Y. Lin28A activates androgen receptor via regulation of c-myc and promotes malignancy of ER-/Her2+ breast cancer. Oncotarget. 2016;7:60407-60418 pubmed 出版商
  264. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  265. Tang Y, Bao W, Yang J, Ma L, Yang J, Xu Y, et al. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Mol Med Rep. 2016;14:2717-24 pubmed 出版商
  266. Debliquis A, Voirin J, Harzallah I, Maurer M, Lerintiu F, Drenou B, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system. Cytometry B Clin Cytom. 2018;94:182-188 pubmed 出版商
  267. Martinez L, Thames E, Kim J, Chaudhuri G, Singh R, Pervin S. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer. 2016;16:559 pubmed 出版商
  268. Wang Y, Wang Y, Li G. TRPC1/TRPC3 channels mediate lysophosphatidylcholine-induced apoptosis in cultured human coronary artery smooth muscles cells. Oncotarget. 2016;7:50937-50951 pubmed 出版商
  269. Engel N, Ali I, Adamus A, Frank M, Dad A, Ali S, et al. Antitumor evaluation of two selected Pakistani plant extracts on human bone and breast cancer cell lines. BMC Complement Altern Med. 2016;16:244 pubmed 出版商
  270. Jeong H, Cho Y, Kim K, Kim Y, Kim K, Na Y, et al. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC Complement Altern Med. 2016;16:239 pubmed 出版商
  271. Yu X, Sun K, Tang X, Zhou C, Sun H, Yan Z, et al. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer. Oncol Lett. 2016;12:983-988 pubmed
  272. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  273. Ma T, Fan B, Zhang C, Zhao H, Han C, Gao C, et al. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway. Sci Rep. 2016;6:29926 pubmed 出版商
  274. Ahmed N, Murakami M, Hirose Y, Nakashima M. Therapeutic Potential of Dental Pulp Stem Cell Secretome for Alzheimer's Disease Treatment: An In Vitro Study. Stem Cells Int. 2016;2016:8102478 pubmed 出版商
  275. Yang W, Ng F, Chan K, Pu X, Poston R, Ren M, et al. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction. PLoS Genet. 2016;12:e1006127 pubmed 出版商
  276. Peng H, Cheng Y, Hsu Y, Wu G, Kuo C, Liou J, et al. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0158440 pubmed 出版商
  277. Takagi Y, Shimada K, Shimada S, Sakamoto A, Naoe T, Nakamura S, et al. SPIB is a novel prognostic factor in diffuse large B-cell lymphoma that mediates apoptosis via the PI3K-AKT pathway. Cancer Sci. 2016;107:1270-80 pubmed 出版商
  278. Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS ONE. 2016;11:e0157590 pubmed 出版商
  279. Tagscherer K, Fassl A, Sinkovic T, Richter J, Schecher S, Macher Goeppinger S, et al. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int. 2016;16:42 pubmed 出版商
  280. Qi L, Lv X, Zhang T, Jia P, Yan R, Li S, et al. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells. Sci Rep. 2016;6:26961 pubmed 出版商
  281. Amara S, Zheng M, Tiriveedhi V. Oleanolic Acid Inhibits High Salt-Induced Exaggeration of Warburg-like Metabolism in Breast Cancer Cells. Cell Biochem Biophys. 2016;74:427-34 pubmed 出版商
  282. Kawamura T, Kawatani M, Muroi M, Kondoh Y, Futamura Y, Aono H, et al. Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival. Sci Rep. 2016;6:26521 pubmed 出版商
  283. Dar A, Majid S, Bezrookove V, Phan B, Ursu S, Nosrati M, et al. BPTF transduces MITF-driven prosurvival signals in melanoma cells. Proc Natl Acad Sci U S A. 2016;113:6254-8 pubmed 出版商
  284. Hein A, Post C, Sheinin Y, Lakshmanan I, Natarajan A, Enke C, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35:6319-6329 pubmed 出版商
  285. Gao Z, Liu Z, Bi M, Zhang J, Han Z, Han X, et al. Metformin induces apoptosis via a mitochondria-mediated pathway in human breast cancer cells in vitro. Exp Ther Med. 2016;11:1700-1706 pubmed
  286. Tuşaliu M, Zainea V, Mogoantă C, Dragu A, GoanŢă C, Niţescu M, et al. Diagnostic and therapeutic aspects in malignant sinonasal lymphoma. Rom J Morphol Embryol. 2016;57:233-6 pubmed
  287. Wang Y, Li Y, Song L, Li Y, Jiang S, Zhang S. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Mol Med Rep. 2016;14:234-42 pubmed 出版商
  288. Cook A, McDonnell A, Lake R, Nowak A. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology. 2016;5:e1066062 pubmed
  289. Thomas R, Demeter Z, Kennedy K, Borst L, Singh K, Valli V, et al. Integrated immunohistochemical and DNA copy number profiling analysis provides insight into the molecular pathogenesis of canine follicular lymphoma. Vet Comp Oncol. 2017;15:852-867 pubmed 出版商
  290. Huang Q, Zhan L, Cao H, Li J, Lyu Y, Guo X, et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy. 2016;12:999-1014 pubmed 出版商
  291. Strappazzon F, Di Rita A, Cianfanelli V, D Orazio M, Nazio F, Fimia G, et al. Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy. 2016;12:963-75 pubmed 出版商
  292. Yao J, Wang Y, Fang B, Zhang S, Cheng B. piR-651 and its function in 95-D lung cancer cells. Biomed Rep. 2016;4:546-550 pubmed
  293. Pallis M, Burrows F, Ryan J, Grundy M, Seedhouse C, Abdul Aziz A, et al. Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget. 2017;8:16220-16232 pubmed 出版商
  294. Pires A, Marques C, Encarnação J, Abrantes A, Mamede A, Laranjo M, et al. Ascorbic acid and colon cancer: an oxidative stimulus to cell death depending on cell profile. Eur J Cell Biol. 2016;95:208-18 pubmed 出版商
  295. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  296. Conway A, Van Nostrand E, Pratt G, Aigner S, Wilbert M, Sundararaman B, et al. Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep. 2016;15:666-679 pubmed 出版商
  297. O Neill K, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30:973-88 pubmed 出版商
  298. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  299. Takeuchi H, Taoka R, Mmeje C, Jinesh G, Safe S, Kamat A. CDODA-Me decreases specificity protein transcription factors and induces apoptosis in bladder cancer cells through induction of reactive oxygen species. Urol Oncol. 2016;34:337.e11-8 pubmed 出版商
  300. Wang H, Zhang H, Chen X, Zhao T, Kong Q, Yan M, et al. The decreased expression of electron transfer flavoprotein ? is associated with tubular cell apoptosis in diabetic nephropathy. Int J Mol Med. 2016;37:1290-8 pubmed 出版商
  301. Li J, Chen K, Li S, Liu T, Wang F, Xia Y, et al. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis. PLoS ONE. 2016;11:e0152570 pubmed 出版商
  302. Garcia C, Videla Richardson G, Dimopoulos N, Fernandez Espinosa D, Miriuka S, Sevlever G, et al. Human Pluripotent Stem Cells and Derived Neuroprogenitors Display Differential Degrees of Susceptibility to BH3 Mimetics ABT-263, WEHI-539 and ABT-199. PLoS ONE. 2016;11:e0152607 pubmed 出版商
  303. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  304. Li B, Chen D, Li W, Xiao D. 20(S)-Protopanaxadiol saponins inhibit SKOV3 cell migration. Oncol Lett. 2016;11:1693-1698 pubmed
  305. Salzman D, Nakamura K, Nallur S, Dookwah M, Metheetrairut C, Slack F, et al. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun. 2016;7:10954 pubmed 出版商
  306. Li Y, Ma H, Lu Y, Tan B, Xu L, Lawal T, et al. Menoprogen, a TCM Herbal Formula for Menopause, Increases Endogenous E2 in an Aged Rat Model of Menopause by Reducing Ovarian Granulosa Cell Apoptosis. Biomed Res Int. 2016;2016:2574637 pubmed 出版商
  307. Ranjan K, Pathak C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Sci Rep. 2016;6:22787 pubmed 出版商
  308. Bozkurt K, Yalçın Y, ErdemoÄŸlu E, Tatar B, ErdemoÄŸlu E, Çerçi S, et al. The role of immunohistochemical adrenomedullin and Bcl-2 expression in development of type-1 endometrial adenocarcinoma: Adrenomedullin expression in endometrium. Pathol Res Pract. 2016;212:450-5 pubmed 出版商
  309. Qiao C, Lu N, Zhou Y, Ni T, Dai Y, Li Z, et al. Oroxylin A modulates mitochondrial function and apoptosis in human colon cancer cells by inducing mitochondrial translocation of wild-type p53. Oncotarget. 2016;7:17009-20 pubmed 出版商
  310. van der Heijden M, Zimberlin C, Nicholson A, Colak S, Kemp R, Meijer S, et al. Bcl-2 is a critical mediator of intestinal transformation. Nat Commun. 2016;7:10916 pubmed 出版商
  311. van den Brand M, Balagué O, van Cleef P, Groenen P, Hebeda K, de Jong D, et al. A subset of low-grade B cell lymphomas with a follicular growth pattern but without a BCL2 translocation shows features suggestive of nodal marginal zone lymphoma. J Hematop. 2016;9:3-8 pubmed
  312. Brito A, Ribeiro M, Abrantes A, Mamede A, Laranjo M, Casalta Lopes J, et al. New Approach for Treatment of Primary Liver Tumors: The Role of Quercetin. Nutr Cancer. 2016;68:250-66 pubmed 出版商
  313. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  314. Kemp M, Sancar A. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress. J Biol Chem. 2016;291:9330-42 pubmed 出版商
  315. Gilormini M, Malesys C, Armandy E, Manas P, Guy J, Magne N, et al. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget. 2016;7:16731-44 pubmed 出版商
  316. Yang C, Cui X, Dai X, Liao W. Downregulation of Foxc2 enhances apoptosis induced by 5-fluorouracil through activation of MAPK and AKT pathways in colorectal cancer. Oncol Lett. 2016;11:1549-1554 pubmed
  317. Adighibe O, Leek R, Fernandez Mercado M, Hu J, Snell C, Gatter K, et al. Why some tumours trigger neovascularisation and others don't: the story thus far. Chin J Cancer. 2016;35:18 pubmed 出版商
  318. Lamba Saini M, Bouzin C, Weynand B, Marbaix E. An Appraisal of Proliferation and Apoptotic Markers in Papillary Thyroid Carcinoma: An Automated Analysis. PLoS ONE. 2016;11:e0148656 pubmed 出版商
  319. Setoguchi R. IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. Int Immunol. 2016;28:293-305 pubmed 出版商
  320. Zhang Y, Zou C, Yang S, Fu J. P120 catenin attenuates the angiotensin II-induced apoptosis of human umbilical vein endothelial cells by suppressing the mitochondrial pathway. Int J Mol Med. 2016;37:623-30 pubmed 出版商
  321. Chen B, Song G, Liu M, Qian L, Wang L, Gu H, et al. Inhibition of miR-29c promotes proliferation, and inhibits apoptosis and differentiation in P19 embryonic carcinoma cells. Mol Med Rep. 2016;13:2527-35 pubmed 出版商
  322. Li Y, Liu J, Gao D, Wei J, Yuan H, Niu X, et al. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep. 2016;13:2552-60 pubmed 出版商
  323. De Toni E, Ziesch A, Rizzani A, Török H, Hocke S, Lü S, et al. Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget. 2016;7:9477-90 pubmed 出版商
  324. Klumpp D, Misovic M, Szteyn K, Shumilina E, Rudner J, Huber S. Targeting TRPM2 Channels Impairs Radiation-Induced Cell Cycle Arrest and Fosters Cell Death of T Cell Leukemia Cells in a Bcl-2-Dependent Manner. Oxid Med Cell Longev. 2016;2016:8026702 pubmed 出版商
  325. Soriano A, París Coderch L, Jubierre L, Martínez A, Zhou X, Piskareva O, et al. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget. 2016;7:9271-87 pubmed 出版商
  326. Chandrasekaran U, Yi W, Gupta S, Weng C, Giannopoulou E, Chinenov Y, et al. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol. 2016;68:1454-66 pubmed 出版商
  327. Wojtuszkiewicz A, Schuurhuis G, Kessler F, Piersma S, Knol J, Pham T, et al. Exosomes Secreted by Apoptosis-Resistant Acute Myeloid Leukemia (AML) Blasts Harbor Regulatory Network Proteins Potentially Involved in Antagonism of Apoptosis. Mol Cell Proteomics. 2016;15:1281-98 pubmed 出版商
  328. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  329. Wu M, Ai W, Chen L, Zhao S, Liu E. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med. 2016;37:565-74 pubmed 出版商
  330. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  331. Cloonan S, Glass K, Laucho Contreras M, Bhashyam A, Cervo M, Pabón M, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016;22:163-74 pubmed 出版商
  332. Li W, Zou J, Yue F, Song K, Chen Q, McKeehan W, et al. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell. 2016;15:370-9 pubmed 出版商
  333. Cao L, Li H, Lin W, Tan H, Xie L, Zhong Z, et al. Morphine, a potential antagonist of cisplatin cytotoxicity, inhibits cisplatin-induced apoptosis and suppression of tumor growth in nasopharyngeal carcinoma xenografts. Sci Rep. 2016;6:18706 pubmed 出版商
  334. Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062-76 pubmed 出版商
  335. Abdel Hamid A, Firgany A, Ali E. Effect of memantine: A NMDA receptor blocker, on ethambutol-induced retinal injury. Ann Anat. 2016;204:86-92 pubmed 出版商
  336. Bishayee A, Mandal A, Bhattacharyya P, Bhatia D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr Cancer. 2016;68:120-30 pubmed 出版商
  337. Ranjan K, Pathak C. Expression of cFLIPL Determines the Basal Interaction of Bcl-2 With Beclin-1 and Regulates p53 Dependent Ubiquitination of Beclin-1 During Autophagic Stress. J Cell Biochem. 2016;117:1757-68 pubmed 出版商
  338. Dupont T, Yang S, Patel J, Hatzi K, Malik A, Tam W, et al. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget. 2016;7:3520-32 pubmed 出版商
  339. Martínez Martínez M, Mosqueda Taylor A, Delgado Azañero W, Rumayor Piña A, de Almeida O. Primary intraosseous squamous cell carcinoma arising in an odontogenic keratocyst previously treated with marsupialization: case report and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:e87-95 pubmed 出版商
  340. Bo Q, Sun X, Liu J, Sui X, Li G. Antitumor action of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone in hepatocellular carcinoma. Oncol Lett. 2015;10:1979-1984 pubmed
  341. De Luca T, Pelosi A, Trisciuoglio D, D Aguanno S, Desideri M, Farini V, et al. miR-211 and MITF modulation by Bcl-2 protein in melanoma cells. Mol Carcinog. 2016;55:2304-2312 pubmed 出版商
  342. Wang S, Song T, Leng C, Lan K, Ning J, Chu H. Propofol protects against the neurotoxicity of 1‑methyl‑4‑phenylpyridinium. Mol Med Rep. 2016;13:309-14 pubmed 出版商
  343. Fridriksdottir A, Kim J, Villadsen R, Klitgaard M, Hopkinson B, Petersen O, et al. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun. 2015;6:8786 pubmed 出版商
  344. Zucal C, D Agostino V, Casini A, Mantelli B, Thongon N, Soncini D, et al. EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition. BMC Cancer. 2015;15:855 pubmed 出版商
  345. Amigo Jiménez I, Bailón E, Aguilera Montilla N, Terol M, García Marco J, García Pardo A. Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget. 2015;6:44832-48 pubmed 出版商
  346. Herriott A, Tudhope S, Junge G, Rodrigues N, Patterson M, Woodhouse L, et al. PARP1 expression, activity and ex vivo sensitivity to the PARP inhibitor, talazoparib (BMN 673), in chronic lymphocytic leukaemia. Oncotarget. 2015;6:43978-91 pubmed 出版商
  347. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  348. Ting W, Kuo W, Hsieh D, Yeh Y, Day C, Chen Y, et al. Heat Killed Lactobacillus reuteri GMNL-263 Reduces Fibrosis Effects on the Liver and Heart in High Fat Diet-Hamsters via TGF-β Suppression. Int J Mol Sci. 2015;16:25881-96 pubmed 出版商
  349. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  350. Deisting W, Raum T, Kufer P, Baeuerle P, Münz M. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110. PLoS ONE. 2015;10:e0141669 pubmed 出版商
  351. Chauhan S, Ahmed Z, Bradfute S, Arko Mensah J, Mandell M, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Commun. 2015;6:8620 pubmed 出版商
  352. Li M, Quan C, Toth R, Campbell D, MacKintosh C, Wang H, et al. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders. J Biol Chem. 2015;290:30030-41 pubmed 出版商
  353. Nichols C, Shepherd D, Knuckles T, Thapa D, Stricker J, Stapleton P, et al. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol. 2015;309:H2017-30 pubmed 出版商
  354. Moncunill Massaguer C, Saura Esteller J, Pérez Perarnau A, Palmeri C, Núñez Vázquez S, Cosialls A, et al. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation. Oncotarget. 2015;6:41750-65 pubmed 出版商
  355. Kroon J, Puhr M, Buijs J, van der Horst G, Hemmer D, Marijt K, et al. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer. Endocr Relat Cancer. 2016;23:35-45 pubmed 出版商
  356. Guo W, Zhang Y, Ling Z, Liu X, Zhao X, Yuan Z, et al. Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner. Cell Death Dis. 2015;6:e1919 pubmed 出版商
  357. Sochalska M, Ottina E, Tuzlak S, Herzog S, Herold M, Villunger A. Conditional knockdown of BCL2A1 reveals rate-limiting roles in BCR-dependent B-cell survival. Cell Death Differ. 2016;23:628-39 pubmed 出版商
  358. Ertoy Baydar D, Kosemehmetoglu K, Aydin O, Bridge J, Buyukeren B, Aki F. Primary sclerosing epithelioid fibrosarcoma of kidney with variant histomorphologic features: report of 2 cases and review of the literature. Diagn Pathol. 2015;10:186 pubmed 出版商
  359. Ambroise G, Portier A, Roders N, Arnoult D, Vazquez A. Subcellular localization of PUMA regulates its pro-apoptotic activity in Burkitt's lymphoma B cells. Oncotarget. 2015;6:38181-94 pubmed 出版商
  360. Anderson K, Russell A, Foletta V. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio. 2015;5:668-81 pubmed 出版商
  361. Ray A, Vasudevan S, Sengupta S. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death. PLoS ONE. 2015;10:e0137614 pubmed 出版商
  362. Salim H, Zong D, Hååg P, Novak M, Mörk B, Lewensohn R, et al. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines. BMC Cancer. 2015;15:628 pubmed 出版商
  363. Ramírez de Arellano A, Lopez Pulido E, Martínez Neri P, Estrada Chávez C, González Lucano R, Fafutis Morris M, et al. STAT3 activation is required for the antiapoptotic effects of prolactin in cervical cancer cells. Cancer Cell Int. 2015;15:83 pubmed 出版商
  364. Lavik A, Zhong F, Chang M, Greenberg E, Choudhary Y, Smith M, et al. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget. 2015;6:27388-402 pubmed 出版商
  365. Schmidt L, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch J, et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS ONE. 2015;10:e0136023 pubmed 出版商
  366. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  367. Tiffen J, Gunatilake D, Gallagher S, Gowrishankar K, Heinemann A, Cullinane C, et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget. 2015;6:27023-36 pubmed 出版商
  368. Adachi K, Miki Y, Saito R, Hata S, Yamauchi M, Mikami Y, et al. Intracrine steroid production and mammalian target of rapamycin pathways in pulmonary lymphangioleiomyomatosis. Hum Pathol. 2015;46:1685-93 pubmed 出版商
  369. Lorkova L, Scigelova M, Arrey T, Vit O, Pospisilova J, Doktorova E, et al. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells. PLoS ONE. 2015;10:e0135314 pubmed 出版商
  370. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  371. Akahane K, Sanda T, Mansour M, Radimerski T, DeAngelo D, Weinstock D, et al. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia. 2016;30:219-28 pubmed 出版商
  372. Oteiza A, Mechti N. Control of FoxO4 Activity and Cell Survival by TRIM22 Directs TLR3-Stimulated Cells Toward IFN Type I Gene Induction or Apoptosis. J Interferon Cytokine Res. 2015;35:859-74 pubmed 出版商
  373. Luna Acosta J, Alba Betancourt C, Martínez Moreno C, Ramírez C, Carranza M, Luna M, et al. Direct antiapoptotic effects of growth hormone are mediated by PI3K/Akt pathway in the chicken bursa of Fabricius. Gen Comp Endocrinol. 2015;224:148-59 pubmed 出版商
  374. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed 出版商
  375. Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, et al. The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 2015;6:23427-44 pubmed
  376. Wu C, Huang K, Yang T, Li Y, Wen C, Hsu S, et al. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2015;10:e0132052 pubmed 出版商
  377. Masotti A, Donninelli G, Da Sacco L, Varano B, Del Cornò M, Gessani S. HIV-1 gp120 influences the expression of microRNAs in human monocyte-derived dendritic cells via STAT3 activation. BMC Genomics. 2015;16:480 pubmed 出版商
  378. Mavroeidis L, Sheldon H, Briasoulis E, Marselos M, Pappas P, Harris A. Metronomic vinorelbine: Anti-angiogenic activity in vitro in normoxic and severe hypoxic conditions, and severe hypoxia-induced resistance to its anti-proliferative effect with reversal by Akt inhibition. Int J Oncol. 2015;47:455-64 pubmed 出版商
  379. Bresin A, Callegari E, D Abundo L, Cattani C, Bassi C, Zagatti B, et al. miR-181b as a therapeutic agent for chronic lymphocytic leukemia in the Eµ-TCL1 mouse model. Oncotarget. 2015;6:19807-18 pubmed
  380. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  381. Balzamino B, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med. 2015;17:314-25 pubmed 出版商
  382. Andreasen S, Therkildsen M, Grauslund M, Friis Hansen L, Wessel I, Homøe P. Activation of the interleukin-6/Janus kinase/STAT3 pathway in pleomorphic adenoma of the parotid gland. APMIS. 2015;123:706-15 pubmed 出版商
  383. Soares A, Müller T, Chege G, Williamson A, Burgers W. Transient global T cell activation after vaccination of rhesus macaques with a DNA-poxvirus vaccine regimen for HIV. Vaccine. 2015;33:3435-9 pubmed 出版商
  384. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  385. Ohlmann C, Brecht I, Junker K, van der Zee J, Nistor A, Bohle R, et al. Sclerosing epithelioid fibrosarcoma of the kidney: clinicopathologic and molecular study of a rare neoplasm at a novel location. Ann Diagn Pathol. 2015;19:221-5 pubmed 出版商
  386. Wang Z, Ma B, Ji X, Deng Y, Zhang T, Zhang X, et al. MicroRNA-378-5p suppresses cell proliferation and induces apoptosis in colorectal cancer cells by targeting BRAF. Cancer Cell Int. 2015;15:40 pubmed 出版商
  387. Cuevas C, Tapia Rojas C, Cespedes C, Inestrosa N, Vio C. β-Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. Biomed Res Int. 2015;2015:726012 pubmed 出版商
  388. Mishra A, Kumar R, Tyagi A, Kohaar I, Hedau S, Bharti A, et al. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. Ecancermedicalscience. 2015;9:525 pubmed 出版商
  389. Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich P, Derouazi M, Walker P. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol. 2015;45:2263-75 pubmed 出版商
  390. Haschka M, Soratroi C, Kirschnek S, Hacker G, Hilbe R, Geley S, et al. The NOXA-MCL1-BIM axis defines lifespan on extended mitotic arrest. Nat Commun. 2015;6:6891 pubmed 出版商
  391. Zou Z, Cai Y, Chen Y, Chen S, Liu L, Shen Z, et al. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep. 2015;12:2089-97 pubmed 出版商
  392. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  393. Chen Y, Li X, Guo L, Wu X, He C, Zhang S, et al. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer. Mol Med Rep. 2015;12:1645-52 pubmed 出版商
  394. Hotokezaka Y, Katayama I, van Leyen K, Nakamura T. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses. Cell Death Dis. 2015;6:e1719 pubmed 出版商
  395. Yang L, Zhang S, George S, Teng R, You X, Xu M, et al. Targeting Notch1 and proteasome as an effective strategy to suppress T-cell lymphoproliferative neoplasms. Oncotarget. 2015;6:14953-69 pubmed
  396. Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee S. Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. Lab Invest. 2015;95:702-17 pubmed 出版商
  397. Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji J, et al. PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget. 2015;6:9420-33 pubmed
  398. McMillan E, Paré M, Baechler B, Graham D, Rush J, Quadrilatero J. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. PLoS ONE. 2015;10:e0119382 pubmed 出版商
  399. Farrugia M, Sharma S, Lin C, McLaughlin S, Vanderbilt D, Ammer A, et al. Regulation of anti-apoptotic signaling by Kruppel-like factors 4 and 5 mediates lapatinib resistance in breast cancer. Cell Death Dis. 2015;6:e1699 pubmed 出版商
  400. Freeman J, Feng Y, Demehri F, Dempsey P, Teitelbaum D. TPN-associated intestinal epithelial cell atrophy is modulated by TLR4/EGF signaling pathways. FASEB J. 2015;29:2943-58 pubmed 出版商
  401. Giunta S, Castorina A, Marzagalli R, Szychlinska M, Pichler K, Mobasheri A, et al. Ameliorative effects of PACAP against cartilage degeneration. Morphological, immunohistochemical and biochemical evidence from in vivo and in vitro models of rat osteoarthritis. Int J Mol Sci. 2015;16:5922-44 pubmed 出版商
  402. Schüll S, Günther S, Brodesser S, Seeger J, Tosetti B, Wiegmann K, et al. Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6. Cell Death Dis. 2015;6:e1691 pubmed 出版商
  403. Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, et al. TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain. 2015;8:11 pubmed 出版商
  404. Alikanoglu A, Yildirim M, Suren D, Tutus B, Kaya V, Topal C, et al. Expression of Cox-2 and Bcl-2 in Paget's disease of the breast. Asian Pac J Cancer Prev. 2015;16:1041-5 pubmed
  405. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  406. Shi S, Wang Q, Xu J, Jang J, Padilla M, Nyunoya T, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640-51 pubmed
  407. Meykler S, Baloch Z, Barroeta J. A case of marginal zone lymphoma with extensive emperipolesis diagnosed on pleural effusion cytology with immunocytochemistry and flow cytometry. Cytopathology. 2016;27:70-2 pubmed 出版商
  408. Long J, Schoonen P, Graczyk D, O Prey J, Ryan K. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene. 2015;34:5152-62 pubmed 出版商
  409. Huang S, Cui Y, Guo X, Wang L, Li S, Lu Y, et al. 2,2',4,4'-Tetrabromodiphenyl ether disrupts spermatogenesis, impairs mitochondrial function and induces apoptosis of early leptotene spermatocytes in rats. Reprod Toxicol. 2015;51:114-24 pubmed 出版商
  410. Guan J, Zhang X, Sun W, Qi L, Wu J, Qin Z. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis. 2015;6:e1624 pubmed 出版商
  411. Huang P, Hung S, Pao C, Wang T. N-(1-pyrenyl) maleimide induces bak oligomerization and mitochondrial dysfunction in Jurkat Cells. Biomed Res Int. 2015;2015:798489 pubmed 出版商
  412. Hole S, Pedersen A, Hansen S, Lundqvist J, Yde C, Lykkesfeldt A. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol. 2015;46:1481-90 pubmed 出版商
  413. Suo H, Song J, Zhou Y, Liu Z, Yi R, Zhu K, et al. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder. Oncol Lett. 2015;9:972-978 pubmed
  414. Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015;5:7767 pubmed 出版商
  415. Xia J, Chen S, Lv Y, Lu L, Hu W, Zhou Y. ZGDHu-1 induces Gâ‚‚/M phase arrest and apoptosis in Kasumi-1 cells. Mol Med Rep. 2015;11:3398-404 pubmed 出版商
  416. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  417. Gültiken N, Guvenc T, Kaya D, Agaoglu A, Ay S, Kücükaslan I, et al. Tarantula cubensis extract alters the degree of apoptosis and mitosis in canine mammary adenocarcinomas. J Vet Sci. 2015;16:213-9 pubmed
  418. Papanikolaou V, Stefanou N, Dubos S, Papathanasiou I, Palianopoulou M, Valiakou V, et al. Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell Oncol (Dordr). 2015;38:155-64 pubmed 出版商
  419. Green A, Caracappa D, Benhasouna A, Alshareeda A, Nolan C, Macmillan R, et al. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res Treat. 2015;149:353-62 pubmed 出版商
  420. Gomez Bougie P, Halliez M, Maïga S, Godon C, Kervoëlen C, Pellat Deceunynck C, et al. Curcumin induces cell death of the main molecular myeloma subtypes, particularly the poor prognosis subgroups. Cancer Biol Ther. 2015;16:60-5 pubmed 出版商
  421. Song M, Chung J, Lee J, Yang D, Kim I, Shin D, et al. High Ki-67 expression in involved bone marrow predicts worse clinical outcome in diffuse large B cell lymphoma patients treated with R-CHOP therapy. Int J Hematol. 2015;101:140-7 pubmed 出版商
  422. Huang C, Sheng S, Li R, Sun X, Liu J, Huang G. Lactate promotes resistance to glucose starvation via upregulation of Bcl-2 mediated by mTOR activation. Oncol Rep. 2015;33:875-84 pubmed 出版商
  423. Chow L. Primary intraosseous hybrid nerve sheath tumor of femur: a hitherto undescribed occurrence in bone with secondary aneurysmal bone cyst formation resulting in pathological fracture. Pathol Res Pract. 2015;211:409-14 pubmed 出版商
  424. Kim T, Kim H, Kang Y, Yoon S, Lee J, Choi W, et al. Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts. Biochim Biophys Acta. 2015;1850:401-10 pubmed 出版商
  425. Vogels R, Vlenterie M, Versleijen Jonkers Y, Ruijter E, Bekers E, Verdijk M, et al. Solitary fibrous tumor - clinicopathologic, immunohistochemical and molecular analysis of 28 cases. Diagn Pathol. 2014;9:224 pubmed 出版商
  426. Stacchini A, Pacchioni D, Demurtas A, Aliberti S, Cassenti A, Isolato G, et al. Utilility of flow cytometry as ancillary study to improve the cytologic diagnosis of thyroid lymphomas. Cytometry B Clin Cytom. 2015;88:320-9 pubmed 出版商
  427. Guo L, Shen Y, Zhao X, Guo L, Yu Z, Wang D, et al. Curcumin combined with oxaliplatin effectively suppress colorectal carcinoma in vivo through inducing apoptosis. Phytother Res. 2015;29:357-65 pubmed 出版商
  428. Cho S, Cho M, Kim J, Kaeberlein M, Lee S, Suh Y. Syringaresinol protects against hypoxia/reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF-1α in a FOXO3-dependent mechanism. Oncotarget. 2015;6:43-55 pubmed
  429. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  430. Nie C, Luo Y, Zhao X, Luo N, Tong A, Liu X, et al. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis. Cell Death Dis. 2014;5:e1495 pubmed 出版商
  431. Raap M, Antonopoulos W, Dämmrich M, Christgen H, Steinmann D, Länger F, et al. High frequency of lobular breast cancer in distant metastases to the orbit. Cancer Med. 2015;4:104-11 pubmed 出版商
  432. Wang T, Guo S, Liu Z, Wu L, Li M, Yang J, et al. CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling. Oncotarget. 2014;5:10293-306 pubmed
  433. Waisberg J, de Souza Viana L, Affonso Junior R, Silva S, Denadai M, Margeotto F, et al. Overexpression of the ITGAV gene is associated with progression and spread of colorectal cancer. Anticancer Res. 2014;34:5599-607 pubmed
  434. Mylvaganam G, Velu V, Hong J, Sadagopal S, Kwa S, Basu R, et al. Diminished viral control during simian immunodeficiency virus infection is associated with aberrant PD-1hi CD4 T cell enrichment in the lymphoid follicles of the rectal mucosa. J Immunol. 2014;193:4527-36 pubmed 出版商
  435. Zebboudj A, Maroui M, Dutrieux J, Touil Boukoffa C, Bourouba M, Chelbi Alix M, et al. Sodium arsenite induces apoptosis and Epstein-Barr virus reactivation in lymphoblastoid cells. Biochimie. 2014;107 Pt B:247-56 pubmed 出版商
  436. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  437. Shi R, Zhu S, Li V, Gibson S, Xu X, Kong J. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther. 2014;20:1045-55 pubmed 出版商
  438. Yang Y, Zhou W, Xia J, Gu Z, Wendlandt E, Zhan X, et al. NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma. Oncotarget. 2014;5:11986-97 pubmed
  439. Merabova N, Sariyer I, Saribas A, Knezevic T, Gordon J, Turco M, et al. WW domain of BAG3 is required for the induction of autophagy in glioma cells. J Cell Physiol. 2015;230:831-41 pubmed 出版商
  440. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  441. Choi J, Kang S, Lee S, Bae Y. Prognostic significance of Bcl-2 expression in non-basal triple-negative breast cancer patients treated with anthracycline-based chemotherapy. Tumour Biol. 2014;35:12255-63 pubmed 出版商
  442. Liu Y, Wan S, Zhang P, Zhang W, Zheng J, Lin J, et al. Expression levels of autophagy related proteins and their prognostic significance in retinocytoma and retinoblastoma. Int J Ophthalmol. 2014;7:594-601 pubmed 出版商
  443. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  444. Nicholson A, Guo X, Sullivan C, Cha C. Automated quantitative analysis of tissue microarray of 443 patients with colorectal adenocarcinoma: low expression of Bcl-2 predicts poor survival. J Am Coll Surg. 2014;219:977-87 pubmed 出版商
  445. Park S, Park J, Kim Y, Song S, Kwon H, Lee Y. Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells. Cell Stress Chaperones. 2015;20:149-57 pubmed 出版商
  446. Kivisakk P, Francois K, Mbianda J, Gandhi R, Weiner H, Khoury S. Effect of natalizumab treatment on circulating plasmacytoid dendritic cells: a cross-sectional observational study in patients with multiple sclerosis. PLoS ONE. 2014;9:e103716 pubmed 出版商
  447. Morita A, Ariyasu S, Wang B, Asanuma T, Onoda T, Sawa A, et al. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation. Biochem Biophys Res Commun. 2014;450:1498-504 pubmed 出版商
  448. Su C, Sun F, Cunningham R, Rybalchenko N, Singh M. ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning. Age (Dordr). 2014;36:9685 pubmed 出版商
  449. Syed B, Green A, Nolan C, Morgan D, Ellis I, Cheung K. Biological characteristics and clinical outcome of triple negative primary breast cancer in older women - comparison with their younger counterparts. PLoS ONE. 2014;9:e100573 pubmed 出版商
  450. Rizvi S, Mertens J, Bronk S, Hirsova P, Dai H, Roberts L, et al. Platelet-derived growth factor primes cancer-associated fibroblasts for apoptosis. J Biol Chem. 2014;289:22835-49 pubmed 出版商
  451. Sezgin Alikanoglu A, Yildirim M, Suren D, Yildiz M, Kaya V, Donem Dilli U, et al. Expression of cyclooxygenase-2 and Bcl-2 in breast cancer and their relationship with triple-negative disease. J BUON. 2014;19:430-4 pubmed
  452. Bai L, Chen J, McEachern D, Liu L, Zhou H, Aguilar A, et al. BM-1197: a novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS ONE. 2014;9:e99404 pubmed 出版商
  453. Bellas C, Garcia D, Vicente Y, Kilany L, Abraira V, Navarro B, et al. Immunohistochemical and molecular characteristics with prognostic significance in diffuse large B-cell lymphoma. PLoS ONE. 2014;9:e98169 pubmed 出版商
  454. Neher M, Rich M, Keene C, Weckbach S, Bolden A, Losacco J, et al. Deficiency of complement receptors CR2/CR1 in Cr2?/? mice reduces the extent of secondary brain damage after closed head injury. J Neuroinflammation. 2014;11:95 pubmed 出版商
  455. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  456. Zhang S, Li Y, He X, Dong S, Huang Y, Li X, et al. Photothermolysis mediated by gold nanorods modified with EGFR monoclonal antibody induces Hep-2 cells apoptosis in vitro and in vivo. Int J Nanomedicine. 2014;9:1931-46 pubmed 出版商
  457. Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed 出版商
  458. Klaus C, Kaemmerer E, Reinartz A, Schneider U, Plum P, Jeon M, et al. TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas. Cell Tissue Res. 2014;357:267-78 pubmed 出版商
  459. Ding K, Banerjee A, Tan S, Zhao J, Zhuang Q, Li R, et al. Artemin, a member of the glial cell line-derived neurotrophic factor family of ligands, is HER2-regulated and mediates acquired trastuzumab resistance by promoting cancer stem cell-like behavior in mammary carcinoma cells. J Biol Chem. 2014;289:16057-71 pubmed 出版商
  460. Capella C, Marando A, Longhi E, Bernasconi B, Finzi G, Parravicini C, et al. Primary gastric Merkel cell carcinoma harboring DNA polyomavirus: first description of an unusual high-grade neuroendocrine carcinoma. Hum Pathol. 2014;45:1310-4 pubmed 出版商
  461. Baspinar S, Bircan S, Orhan H, Kapucuoglu N, Bozkurt K. The relation of beclin 1 and bcl-2 expressions in high grade prostatic intraepithelial neoplasia and prostate adenocarcinoma: a tissue microarray study. Pathol Res Pract. 2014;210:412-8 pubmed 出版商
  462. Biaggio V, Alvarez Olmedo D, Pérez Chaca M, Salvetti N, Valdez S, Fanelli M, et al. Cytoprotective mechanisms in rats lung parenchyma with zinc deprivation. Biometals. 2014;27:305-15 pubmed 出版商
  463. Yoon H, Choi Y, Song J, Do I, Kang S, Ko Y, et al. Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines. PLoS ONE. 2014;9:e88587 pubmed 出版商
  464. Yurube T, Hirata H, Kakutani K, Maeno K, Takada T, Zhang Z, et al. Notochordal cell disappearance and modes of apoptotic cell death in a rat tail static compression-induced disc degeneration model. Arthritis Res Ther. 2014;16:R31 pubmed 出版商
  465. Wang C, Wang J, Liu Z, Ma X, Wang X, Jin H, et al. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis. 2014;35:1500-9 pubmed 出版商
  466. Hollevoet K, Antignani A, FitzGerald D, Pastan I. Combining the antimesothelin immunotoxin SS1P with the BH3-mimetic ABT-737 induces cell death in SS1P-resistant pancreatic cancer cells. J Immunother. 2014;37:8-15 pubmed 出版商
  467. Crowther A, Gama V, Bevilacqua A, Chang S, Yuan H, Deshmukh M, et al. Tonic activation of Bax primes neural progenitors for rapid apoptosis through a mechanism preserved in medulloblastoma. J Neurosci. 2013;33:18098-108 pubmed 出版商
  468. Tao L, Zhou X, Shen C, Liang C, Liu B, Tao Y, et al. Tetrandrine induces apoptosis and triggers a caspase cascade in U2-OS and MG-63 cells through the intrinsic and extrinsic pathways. Mol Med Rep. 2014;9:345-9 pubmed 出版商
  469. Hou J, Xia Y, Jiang R, Chen D, Xu J, Deng L, et al. PTPRO plays a dual role in hepatic ischemia reperfusion injury through feedback activation of NF-?B. J Hepatol. 2014;60:306-12 pubmed 出版商
  470. Caramuta S, Lee L, Ozata D, Akçakaya P, Georgii Hemming P, Xie H, et al. Role of microRNAs and microRNA machinery in the pathogenesis of diffuse large B-cell lymphoma. Blood Cancer J. 2013;3:e152 pubmed 出版商
  471. Tan A, Hoang L, Chin D, Rasmussen E, Lopatin U, Hart S, et al. Reduction of HBV replication prolongs the early immunological response to IFN? therapy. J Hepatol. 2014;60:54-61 pubmed 出版商
  472. Stacchini A, Aliberti S, Pacchioni D, Demurtas A, Isolato G, Gazzera C, et al. Flow cytometry significantly improves the diagnostic value of fine needle aspiration cytology of lymphoproliferative lesions of salivary glands. Cytopathology. 2014;25:231-40 pubmed 出版商
  473. Razavi S, Hasheminia D, Mehdizade M, Movahedian B, Keshani F. The relation of pericoronal third molar follicle dimension and bcl-2/ki-67 expression: An immunohistochemical study. Dent Res J (Isfahan). 2012;9:S26-31 pubmed 出版商
  474. Bradford C, Kumar B, Bellile E, Lee J, Taylor J, D SILVA N, et al. Biomarkers in advanced larynx cancer. Laryngoscope. 2014;124:179-87 pubmed 出版商
  475. Ma T, Galimberti F, Erkmen C, Memoli V, Chinyengetere F, SEMPERE L, et al. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545-55 pubmed 出版商
  476. Goraczniak R, Wall B, Behlke M, Lennox K, Ho E, Zaphiros N, et al. U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo. Mol Ther Nucleic Acids. 2013;2:e92 pubmed 出版商
  477. Thompson R, Vardinogiannis I, Gilmore T. The sensitivity of diffuse large B-cell lymphoma cell lines to histone deacetylase inhibitor-induced apoptosis is modulated by BCL-2 family protein activity. PLoS ONE. 2013;8:e62822 pubmed 出版商
  478. Hernandez A, Colvin E, Chen Y, Geiss S, Eller L, Fueger P. Upregulation of p21 activates the intrinsic apoptotic pathway in ?-cells. Am J Physiol Endocrinol Metab. 2013;304:E1281-90 pubmed 出版商
  479. Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y, Maruno T, et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet. 2013;45:98-103 pubmed 出版商
  480. Verma Y, Raghav P, Raj H, Tripathi R, Gangenahalli G. Enhanced heterodimerization of Bax by Bcl-2 mutants improves irradiated cell survival. Apoptosis. 2013;18:212-25 pubmed 出版商
  481. Viana L, Affonso R, Silva S, Denadai M, Matos D, Salinas de Souza C, et al. Relationship between the expression of the extracellular matrix genes SPARC, SPP1, FN1, ITGA5 and ITGAV and clinicopathological parameters of tumor progression and colorectal cancer dissemination. Oncology. 2013;84:81-91 pubmed 出版商
  482. Giaginis C, Politi E, Alexandrou P, Sfiniadakis J, Kouraklis G, Theocharis S. Expression of peroxisome proliferator activated receptor-gamma (PPAR-?) in human non-small cell lung carcinoma: correlation with clinicopathological parameters, proliferation and apoptosis related molecules and patients' survival. Pathol Oncol Res. 2012;18:875-83 pubmed
  483. Lúcio K, Rocha G, Monção Ribeiro L, Fernandes J, Takiya C, Gattass C. Oleanolic acid initiates apoptosis in non-small cell lung cancer cell lines and reduces metastasis of a B16F10 melanoma model in vivo. PLoS ONE. 2011;6:e28596 pubmed 出版商
  484. Winzler C, Fantinato M, Giordan M, Calore E, Basso G, Messina C. CD4(+) T regulatory cells are more resistant to DNA damage compared to CD4(+) T effector cells as revealed by flow cytometric analysis. Cytometry A. 2011;79:903-11 pubmed 出版商
  485. Xargay Torrent S, Lopez Guerra M, Saborit Villarroya I, Rosich L, Campo E, Roué G, et al. Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res. 2011;17:3956-68 pubmed 出版商
  486. Donia M, Maksimovic Ivanic D, Mijatovic S, Mojic M, Miljkovic D, Timotijevic G, et al. In vitro and in vivo anticancer action of Saquinavir-NO, a novel nitric oxide-derivative of the protease inhibitor saquinavir, on hormone resistant prostate cancer cells. Cell Cycle. 2011;10:492-9 pubmed
  487. Hailemariam S, Vosbeck J, Cathomas G, Zlobec I, Mattarelli G, Eichenberger T, et al. Can molecular markers stratify the diagnostic value of high-grade prostatic intraepithelial neoplasia?. Hum Pathol. 2011;42:702-9 pubmed 出版商
  488. Correia M, Costa A, Uhrberg M, Cardoso E, Arosa F. IL-15 induces CD8+ T cells to acquire functional NK receptors capable of modulating cytotoxicity and cytokine secretion. Immunobiology. 2011;216:604-12 pubmed 出版商
  489. Cheuk W, Tam F, Chan A, Luk I, Yuen A, Chan W, et al. Idiopathic cervical fibrosis--a new member of IgG4-related sclerosing diseases: report of 4 cases, 1 complicated by composite lymphoma. Am J Surg Pathol. 2010;34:1678-85 pubmed 出版商
  490. Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Ueno K, et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer. 2011;128:1793-803 pubmed 出版商
  491. Yang Z, von Ballmoos M, Faessler D, Voelzmann J, Ortmann J, Diehm N, et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis. 2010;211:103-9 pubmed 出版商
  492. Jung C, Choi Y, Lee K, Bae J, Kim H, Yoon S, et al. The cytological, clinical, and pathological features of the cribriform-morular variant of papillary thyroid carcinoma and mutation analysis of CTNNB1 and BRAF genes. Thyroid. 2009;19:905-13 pubmed 出版商
  493. Snuderl M, Chi S, De Santis S, Stemmer Rachamimov A, Betensky R, De Girolami U, et al. Prognostic value of tumor microinvasion and metalloproteinases expression in intracranial pediatric ependymomas. J Neuropathol Exp Neurol. 2008;67:911-20 pubmed 出版商
  494. Thomson S, Cox A, Cuddihy S, Pullar J, Hampton M. Inhibition of receptor-mediated apoptosis upon Bcl-2 overexpression is not associated with increased antioxidant status. Biochem Biophys Res Commun. 2008;375:145-50 pubmed 出版商
  495. Rieger J, Lemke D, Maurer G, Weiler M, Frank B, Tabatabai G, et al. Enzastaurin-induced apoptosis in glioma cells is caspase-dependent and inhibited by BCL-XL. J Neurochem. 2008;106:2436-48 pubmed 出版商
  496. Strauss G, Westhoff M, Fischer Posovszky P, Fulda S, Schanbacher M, Eckhoff S, et al. 4-hydroperoxy-cyclophosphamide mediates caspase-independent T-cell apoptosis involving oxidative stress-induced nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG. Cell Death Differ. 2008;15:332-43 pubmed
  497. Takei H, Buckleair L, Powell S. Immunohistochemical expression of apoptosis regulating proteins and sex hormone receptors in meningiomas. Neuropathology. 2008;28:62-8 pubmed
  498. Cheuk W, Chan J, Nuovo G, Chan M, Fok M. Regression of gastric large B-Cell lymphoma accompanied by a florid lymphoma-like T-cell reaction: immunomodulatory effect of Ganoderma lucidum (Lingzhi)?. Int J Surg Pathol. 2007;15:180-6 pubmed
  499. Yoo J, Jung J, Lee M, Seo K, Shim B, Kim S, et al. Immunohistochemical analysis of non-small cell lung cancer: correlation with clinical parameters and prognosis. J Korean Med Sci. 2007;22:318-25 pubmed
  500. Martin Latil S, Mousson L, Autret A, Colbere Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol. 2007;81:4457-64 pubmed
  501. Lawson J, Tran D. Localised breast cancers may have systemic influences on skin and hair. J Clin Pathol. 2007;60:180-4 pubmed
  502. Luo H, Yu S, Li T. Differential expression of apoptosis-related proteins in various cellular components of ameloblastomas. Int J Oral Maxillofac Surg. 2006;35:750-5 pubmed
  503. Sun B, Sun Y, Wang J, Zhao X, Wang X, Hao X. Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. Eur J Cancer Prev. 2006;15:258-65 pubmed
  504. Rivadeneyra Espinoza L, Ruiz Argüelles A. Cell-penetrating anti-native DNA antibodies trigger apoptosis through both the neglect and programmed pathways. J Autoimmun. 2006;26:52-6 pubmed
  505. Damron T, Horton J, Naqvi A, Margulies B, Strauss J, Grant W, et al. Decreased proliferation precedes growth factor changes after physeal irradiation. Clin Orthop Relat Res. 2004;:233-42 pubmed
  506. Sandalova E, Wei C, Masucci M, Levitsky V. Regulation of expression of Bcl-2 protein family member Bim by T cell receptor triggering. Proc Natl Acad Sci U S A. 2004;101:3011-6 pubmed
  507. Damron T, Mathur S, Horton J, Strauss J, Margulies B, Grant W, et al. Temporal changes in PTHrP, Bcl-2, Bax, caspase, TGF-beta, and FGF-2 expression following growth plate irradiation with or without radioprotectant. J Histochem Cytochem. 2004;52:157-67 pubmed
  508. Ng J, Han A, Edelson M, Rosenblum N. Oncoprotein profiles of primary peritoneal malignant mixed müllerian tumors. Int J Gynecol Cancer. 2003;13:870-4 pubmed
  509. Halperin R, Zehavi S, Hadas E, Habler L, Bukovsky I, Schneider D. Simultaneous carcinoma of the endometrium and ovary vs endometrial carcinoma with ovarian metastases: a clinical and immunohistochemical determination. Int J Gynecol Cancer. 2003;13:32-7 pubmed
  510. Zamai L, Canonico B, Gritzapis A, Luchetti F, Felici C, Della Felice M, et al. Intracellular detection of Bcl-2 and p53 proteins by flow cytometry: comparison of monoclonal antibodies and sample preparation protocols. J Biol Regul Homeost Agents. 2002;16:289-302 pubmed
  511. Tran D, Lawson J. Microcysts and breast cancer: a study of biological markers in archival biopsy material. Breast Cancer Res Treat. 2002;75:213-20 pubmed
  512. Solomides C, Miller A, Christman R, Talwar J, Simpkins H. Lymphomas of the oral cavity: histology, immunologic type, and incidence of Epstein-Barr virus infection. Hum Pathol. 2002;33:153-7 pubmed
  513. Desai B, Myers B, Schreiber S. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci U S A. 2002;99:4319-24 pubmed
  514. Shinoura N, Sakurai S, Asai A, Kirino T, Hamada H. Over-expression of APAF-1 and caspase-9 augments radiation-induced apoptosis in U-373MG glioma cells. Int J Cancer. 2001;93:252-61 pubmed
  515. Tanaka Y, Nomi M, Fujii K, Hubscher S, Maruo A, Matsumoto S, et al. Intercellular adhesion molecule 1 underlies the functional heterogeneity of synovial cells in patients with rheumatoid arthritis: involvement of cell cycle machinery. Arthritis Rheum. 2000;43:2513-22 pubmed
  516. Reis Filho J, Faoro L, Carrilho C, Bleggi Torres L, Schmitt F. Evaluation of cell proliferation, epidermal growth factor receptor, and bcl-2 immunoexpression as prognostic factors for patients with World Health Organization grade 2 oligodendroglioma. Cancer. 2000;88:862-9 pubmed
  517. Ashton Key M, Biddolph S, Stein H, Gatter K, Mason D. Heterogeneity of bcl-2 expression in MALT lymphoma. Histopathology. 1995;26:75-8 pubmed