这是一篇来自已证抗体库的有关人类 BSN的综述,是根据56篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合BSN 抗体。
BSN 同义词: ZNF231

Enzo Life Sciences
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠; 1:500; 图 s7a
Enzo Life Sciences BSN抗体(Enzo Life Sciences, SAP7F407)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s7a). Science (2020) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠; 1:500; 图 2a
Enzo Life Sciences BSN抗体(Enzo, ADI-VAM-PS003-F)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). elife (2020) ncbi
单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s2f
Enzo Life Sciences BSN抗体(Enzo, VAM-PS003)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s2f). J Exp Med (2020) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-冰冻切片; 小鼠; 图 9e1
Enzo Life Sciences BSN抗体(Enzo, SAP7F407)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9e1). J Comp Neurol (2019) ncbi
单克隆
  • 免疫细胞化学; 小鼠; 图 1d
Enzo Life Sciences BSN抗体(Enzo, ADI-VAM-PS003)被用于被用于免疫细胞化学在小鼠样本上 (图 1d). Cell (2019) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠; 1:1000; 图 6e
Enzo Life Sciences BSN抗体(Enzo Life Sciences, SAP7F407)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6e). Sci Rep (2018) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠; 图 1a
Enzo Life Sciences BSN抗体(Enzo life sciences, ADI-VAM-PS003-F)被用于被用于免疫组化在小鼠样本上 (图 1a). Cell (2018) ncbi
单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2a
Enzo Life Sciences BSN抗体(Stressgen, ADI-VAM-PS003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠; 1:1000; 表 1
Enzo Life Sciences BSN抗体(Enzo Life Sciences, ADI-VAM-PS003-F)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
单克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 1a
Enzo Life Sciences BSN抗体(Enzo Life Sciences, ADI-VAM-PS003)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 1a). PLoS ONE (2017) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫细胞化学; 大鼠; 1:1000; 图 4a
Enzo Life Sciences BSN抗体(Sapphire Bioscience, ADI-VAM-PS003-F)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 4a). Hippocampus (2017) ncbi
单克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s5s
Enzo Life Sciences BSN抗体(Enzo Life Sciences, ADI-VAM-PS003)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s5s). Nature (2017) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-冰冻切片; 小鼠; 1:500
Enzo Life Sciences BSN抗体(Enzo Life Sciences, SAP7F407)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫细胞化学; 大鼠; 1:1000; 图 6a
Enzo Life Sciences BSN抗体(Enzo, SAP7F407)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 6a). J Cell Physiol (2017) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫细胞化学; 大鼠; 图 5h
Enzo Life Sciences BSN抗体(Enzo Life Sciences, SAP7F407)被用于被用于免疫细胞化学在大鼠样本上 (图 5h). Cell (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫细胞化学; 小鼠; 1:600; 图 2
Enzo Life Sciences BSN抗体(Enzo Lifesciences, SAP7F407)被用于被用于免疫细胞化学在小鼠样本上浓度为1:600 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
Enzo Life Sciences BSN抗体(Enzo Life, ADI-VAM-PS003-F)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫细胞化学; 人类; 1:400; 图 4a
Enzo Life Sciences BSN抗体(Enzo, SAP7F407)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4a). Neurology (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-冰冻切片; 小鼠; 图 6
Enzo Life Sciences BSN抗体(Stressgen, SAP7F407)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). Nat Commun (2016) ncbi
单克隆
  • 其他; 大鼠; 1:500; 图 4
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 2
  • 免疫细胞化学; 大鼠; 1:500; 图 2
Enzo Life Sciences BSN抗体(Enzo Life Sciences, ADI-VAM-PS003)被用于被用于其他在大鼠样本上浓度为1:500 (图 4), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 2) 和 被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠; 1:5000; 图 1
Enzo Life Sciences BSN抗体(Stressgen, ADI-VAM-PS003-D)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 1). J Cell Sci (2016) ncbi
单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3
Enzo Life Sciences BSN抗体(Stressgen, ADI-VAM-PS003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3). Stem Cell Reports (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
Enzo Life Sciences BSN抗体(Enzo Life, SAP7F407)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Exp Eye Res (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠; 图 8
Enzo Life Sciences BSN抗体(Enzo Life Sciences, SAP7F407)被用于被用于免疫组化在小鼠样本上 (图 8). Mol Cell Biol (2015) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 S4
Enzo Life Sciences BSN抗体(Stressgen, ADI-VAM-PS003-D)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 S4). Nat Neurosci (2015) ncbi
单克隆
  • 免疫组化-石蜡切片; 人类; 1:200
Enzo Life Sciences BSN抗体(Enzo, VAM-PS003)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Nat Methods (2015) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-冰冻切片; 小鼠; 1:200
Enzo Life Sciences BSN抗体(ENZO生活科学, SAP7F407)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. EMBO J (2015) ncbi
单克隆
  • 免疫印迹; 人类
Enzo Life Sciences BSN抗体(Stress Gen, VAM-PS003)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫印迹; 人类
Enzo Life Sciences BSN抗体(Stress Gen, VAM-PS003)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠; 1:500; 图 9E
Enzo Life Sciences BSN抗体(生活科学, SAP7F407)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 9E). J Comp Neurol (2015) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-冰冻切片; 小鼠; 1:100
Enzo Life Sciences BSN抗体(Enzo Life Sciences, SAP7F407)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Physiol (2015) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-自由浮动切片; 大鼠; 1 ug/ml; 图 1d
Enzo Life Sciences BSN抗体(Enzo Life Science, SAP7F407)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1 ug/ml (图 1d). Brain Struct Funct (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠
Enzo Life Sciences BSN抗体(Enzo Life Sciences, SAP7F407)被用于被用于免疫组化在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-冰冻切片; 小鼠; 1:100
Enzo Life Sciences BSN抗体(Enzo Life Sciences, ADI-VAM-PS003-D)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Neurosci (2013) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 大鼠; 1:250
Enzo Life Sciences BSN抗体(Stressgen, VAM-PS003)被用于被用于免疫组化在大鼠样本上浓度为1:250. PLoS ONE (2013) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫印迹; 小鼠
Enzo Life Sciences BSN抗体(Enzo Life Sciences, SAP7F407)被用于被用于免疫印迹在小鼠样本上. Diabetologia (2013) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫细胞化学; 大鼠
Enzo Life Sciences BSN抗体(Enzo Life Sciences, SAP7F407)被用于被用于免疫细胞化学在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-冰冻切片; 小鼠; 1:600
Enzo Life Sciences BSN抗体(Enzo life sciences / Stressgen, ADI-VAM-PS003-D)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600. J Comp Neurol (2012) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 大鼠; 1:100
Enzo Life Sciences BSN抗体(Stressgen, VAM-PS003)被用于被用于免疫组化在大鼠样本上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
Enzo Life Sciences BSN抗体(Stressgen, VAMPS003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 大鼠
Enzo Life Sciences BSN抗体(Stressgen Biotechnologies, VAM-PS003)被用于被用于免疫组化在大鼠样本上. J Comp Neurol (2005) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(SAP7F407)
  • 免疫细胞化学; 小鼠; 1:300; 图 5k, 5l
  • 免疫组化; 小鼠; 1:800; 图 5e, 5f
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 5k, 5l) 和 被用于免疫组化在小鼠样本上浓度为1:800 (图 5e, 5f). EMBO Rep (2020) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; fruit fly ; 图 2i
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫组化在fruit fly 样本上 (图 2i) 和 被用于免疫组化在小鼠样本上 (图 3a). Science (2019) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠; 1:500; 图 1c
艾博抗(上海)贸易有限公司 BSN抗体(AbCam, ab82958)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). elife (2018) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1c). elife (2018) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫组化在人类样本上 (图 2). J Comp Neurol (2019) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-石蜡切片; 小鼠; 图 s1c
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1c). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫细胞化学; 大鼠; 图 6
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫细胞化学在大鼠样本上 (图 6). J Neurosci (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化; 大鼠; 1:100; 图 s3
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 s3). Development (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫细胞化学在人类样本上. Sci Rep (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫细胞化学; 小鼠; 图 3
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Nat Methods (2016) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). Nat Commun (2015) ncbi
小鼠 单克隆(SAP7F407)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s8
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, ab82958)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s8). Nature (2015) ncbi
小鼠 单克隆(SAP7F407)
艾博抗(上海)贸易有限公司 BSN抗体(Abcam, AB82958)被用于. Science (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D63B6)
  • 免疫组化; 小鼠; 1:200; 图 6a
赛信通(上海)生物试剂有限公司 BSN抗体(Millipore, 6897)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6a). Acta Neuropathol (2016) ncbi
domestic rabbit 单克隆(D63B6)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 BSN抗体(Cell Signaling, 6897S)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2015) ncbi
文章列表
  1. Suzuki K, Elegheert J, Song I, Sasakura H, Senkov O, Matsuda K, et al. A synthetic synaptic organizer protein restores glutamatergic neuronal circuits. Science. 2020;369: pubmed 出版商
  2. Banerjee A, Lee J, Nemcova P, Liu C, Kaeser P. Synaptotagmin-1 is the Ca2+ sensor for fast striatal dopamine release. elife. 2020;9: pubmed 出版商
  3. Bączyk M, Alami N, Delestrée N, Martinot C, Tang L, Commisso B, et al. Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS. J Exp Med. 2020;217: pubmed 出版商
  4. Bera S, Camblor Perujo S, Calleja Barca E, Negrete Hurtado A, Racho J, de Bruyckere E, et al. AP-2 reduces amyloidogenesis by promoting BACE1 trafficking and degradation in neurons. EMBO Rep. 2020;21:e47954 pubmed 出版商
  5. Nakamoto C, Konno K, Miyazaki T, Nakatsukasa E, Natsume R, Abe M, et al. Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. J Comp Neurol. 2019;: pubmed 出版商
  6. Mukherjee A, Carvalho F, Eliez S, Caroni P. Long-Lasting Rescue of Network and Cognitive Dysfunction in a Genetic Schizophrenia Model. Cell. 2019;178:1387-1402.e14 pubmed 出版商
  7. Gao R, Asano S, Upadhyayula S, Pisarev I, Milkie D, Liu T, et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science. 2019;363: pubmed 出版商
  8. Rubio Fernández M, Uribe M, Vicente Tejedor J, Germain F, Susín Lara C, Quereda C, et al. Impairment of photoreceptor ribbon synapses in a novel Pomt1 conditional knockout mouse model of dystroglycanopathy. Sci Rep. 2018;8:8543 pubmed 出版商
  9. Liu C, Kershberg L, Wang J, Schneeberger S, Kaeser P. Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites. Cell. 2018;172:706-718.e15 pubmed 出版商
  10. Becker L, Schnee M, Niwa M, Sun W, Maxeiner S, Talaei S, et al. The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse. elife. 2018;7: pubmed 出版商
  11. Jean P, Lopez de la Morena D, Michanski S, Jaime Tobón L, Chakrabarti R, Picher M, et al. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. elife. 2018;7: pubmed 出版商
  12. Hunter D, Manglapus M, Bachay G, Claudepierre T, Dolan M, Gesuelli K, et al. CNS synapses are stabilized trans-synaptically by laminins and laminin-interacting proteins. J Comp Neurol. 2017;: pubmed 出版商
  13. Sai K, Wang S, Kaito A, Fujiwara T, Maruo T, Itoh Y, et al. Multiple roles of afadin in the ultrastructural morphogenesis of mouse hippocampal mossy fiber synapses. J Comp Neurol. 2017;525:2719-2734 pubmed 出版商
  14. Puller C, Arbogast P, Keeley P, Reese B, Haverkamp S. Dendritic stratification differs among retinal OFF bipolar cell types in the absence of rod photoreceptors. PLoS ONE. 2017;12:e0173455 pubmed 出版商
  15. Goodman L, Baddeley D, Ambroziak W, Waites C, Garner C, Soeller C, et al. N-terminal SAP97 isoforms differentially regulate synaptic structure and postsynaptic surface pools of AMPA receptors. Hippocampus. 2017;27:668-682 pubmed 出版商
  16. Fadok J, Krabbe S, Markovic M, Courtin J, Xu C, Massi L, et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature. 2017;542:96-100 pubmed 出版商
  17. Hendrickson A, Zhang C. Development of cone photoreceptors and their synapses in the human and monkey fovea. J Comp Neurol. 2019;527:38-51 pubmed 出版商
  18. Luke M, LeVatte T, Rutishauser U, Tremblay F, Clarke D. Polysialylated Neural Cell Adhesion Molecule Protects Against Light-Induced Retinal Degeneration. Invest Ophthalmol Vis Sci. 2016;57:5066-5075 pubmed 出版商
  19. Ampuero E, Jury N, Hartel S, Marzolo M, van Zundert B. Interfering of the Reelin/ApoER2/PSD95 Signaling Axis Reactivates Dendritogenesis of Mature Hippocampal Neurons. J Cell Physiol. 2017;232:1187-1199 pubmed 出版商
  20. Loh K, Stawski P, Draycott A, Udeshi N, Lehrman E, Wilton D, et al. Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts. Cell. 2016;166:1295-1307.e21 pubmed 出版商
  21. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  22. Tillberg P, Chen F, Piatkevich K, Zhao Y, Yu C, English B, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016;34:987-92 pubmed 出版商
  23. Nishimune H, Badawi Y, Mori S, Shigemoto K. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci Rep. 2016;6:27935 pubmed 出版商
  24. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of PSD-95 Depalmitoylating Enzymes. J Neurosci. 2016;36:6431-44 pubmed 出版商
  25. Vilmont V, Cadot B, Ouanounou G, Gomes E. A system for studying mechanisms of neuromuscular junction development and maintenance. Development. 2016;143:2464-77 pubmed 出版商
  26. Heise C, Schroeder J, Schoen M, Halbedl S, Reim D, Woelfle S, et al. Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus. Front Cell Neurosci. 2016;10:106 pubmed 出版商
  27. Gresa Arribas N, Planaguma J, Petit Pedrol M, Kawachi I, Katada S, Glaser C, et al. Human neurexin-3α antibodies associate with encephalitis and alter synapse development. Neurology. 2016;86:2235-42 pubmed 出版商
  28. Wang X, Bey A, Katz B, Badea A, Kim N, David L, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459 pubmed 出版商
  29. Kim E, Jeon C, Lee S, Hwang I, Chung T. Robust Type-specific Hemisynapses Induced by Artificial Dendrites. Sci Rep. 2016;6:24210 pubmed 出版商
  30. Chozinski T, Halpern A, Okawa H, Kim H, Tremel G, Wong R, et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods. 2016;13:485-8 pubmed 出版商
  31. Sadleir K, Kandalepas P, Buggia Prevot V, Nicholson D, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer's disease. Acta Neuropathol. 2016;132:235-56 pubmed 出版商
  32. Schoen M, Reichel J, Demestre M, Putz S, Deshpande D, Proepper C, et al. Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons. Front Cell Neurosci. 2015;9:496 pubmed 出版商
  33. Jimeno D, Gómez C, Calzada N, de la Villa P, Lillo C, Santos E. RASGRF2 controls nuclear migration in postnatal retinal cone photoreceptors. J Cell Sci. 2016;129:729-42 pubmed 出版商
  34. Kawabata S, Takano M, Numasawa Kuroiwa Y, Itakura G, Kobayashi Y, Nishiyama Y, et al. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury. Stem Cell Reports. 2016;6:1-8 pubmed 出版商
  35. Hatanaka Y, Watase K, Wada K, Nagai Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci Rep. 2015;5:16102 pubmed 出版商
  36. Pinilla I, Fernández Sánchez L, Segura F, Sánchez Cano A, Tamarit J, Fuentes Broto L, et al. Long time remodeling during retinal degeneration evaluated by optical coherence tomography, immunocytochemistry and fundus autofluorescence. Exp Eye Res. 2016;150:122-34 pubmed 出版商
  37. Tang L, Craig T, Henley J. SUMOylation of synapsin Ia maintains synaptic vesicle availability and is reduced in an autism mutation. Nat Commun. 2015;6:7728 pubmed 出版商
  38. Du M, Otalora L, Martin A, Moiseyev G, Vanlandingham P, Wang Q, et al. Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism. Mol Cell Biol. 2015;35:2771-89 pubmed 出版商
  39. Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen J, et al. Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease. Nat Neurosci. 2015;18:826-35 pubmed 出版商
  40. Tom Dieck S, Kochen L, Hanus C, Heumüller M, Bartnik I, Nassim Assir B, et al. Direct visualization of newly synthesized target proteins in situ. Nat Methods. 2015;12:411-4 pubmed 出版商
  41. Jacobi A, Loy K, Schmalz A, Hellsten M, Umemori H, Kerschensteiner M, et al. FGF22 signaling regulates synapse formation during post-injury remodeling of the spinal cord. EMBO J. 2015;34:1231-43 pubmed 出版商
  42. Cuesto G, Jordán Álvarez S, Enriquez Barreto L, Ferrús A, Morales M, Acebes A. GSK3β inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS ONE. 2015;10:e0118475 pubmed 出版商
  43. Saunders A, Oldenburg I, Berezovskii V, Johnson C, Kingery N, Elliott H, et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature. 2015;521:85-9 pubmed 出版商
  44. Pérez de Sevilla Müller L, Sargoy A, Fernández Sánchez L, Rodriguez A, Liu J, Cuenca N, et al. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina. J Comp Neurol. 2015;523:1443-60 pubmed 出版商
  45. Chen F, Tillberg P, Boyden E. Optical imaging. Expansion microscopy. Science. 2015;347:543-8 pubmed 出版商
  46. Chand K, Lee K, Schenning M, Lavidis N, Noakes P. Loss of β2-laminin alters calcium sensitivity and voltage-gated calcium channel maturation of neurotransmission at the neuromuscular junction. J Physiol. 2015;593:245-65 pubmed 出版商
  47. Chounlamountry K, Castets F, Tell F, Kessler J. The excitatory amino acid carrier 1 (EAAC1) in the rat nucleus of the solitary tract: subcellular localization suggests no major role in glutamate clearance. Brain Struct Funct. 2016;221:1113-24 pubmed 出版商
  48. Ishiyama S, Schmidt H, Cooper B, Brose N, Eilers J. Munc13-3 superprimes synaptic vesicles at granule cell-to-basket cell synapses in the mouse cerebellum. J Neurosci. 2014;34:14687-96 pubmed 出版商
  49. Wu F, Li R, Umino Y, Kaczynski T, Sapkota D, Li S, et al. Onecut1 is essential for horizontal cell genesis and retinal integrity. J Neurosci. 2013;33:13053-65, 13065a pubmed 出版商
  50. Bourque S, Kuny S, Reyes L, Davidge S, Sauve Y. Prenatal hypoxia is associated with long-term retinal dysfunction in rats. PLoS ONE. 2013;8:e61861 pubmed 出版商
  51. Mandemakers W, Abuhatzira L, Xu H, Caromile L, Hébert S, Snellinx A, et al. Co-regulation of intragenic microRNA miR-153 and its host gene Ia-2 ?: identification of miR-153 target genes with functions related to IA-2? in pancreas and brain. Diabetologia. 2013;56:1547-56 pubmed 出版商
  52. Taylor A, Wu J, Tai H, Schuman E. Axonal translation of ?-catenin regulates synaptic vesicle dynamics. J Neurosci. 2013;33:5584-9 pubmed 出版商
  53. Chen J, Mizushige T, Nishimune H. Active zone density is conserved during synaptic growth but impaired in aged mice. J Comp Neurol. 2012;520:434-52 pubmed 出版商
  54. Petralia R, Schwartz C, Wang Y, Mattson M, Yao P. Subcellular localization of Patched and Smoothened, the receptors for Sonic hedgehog signaling, in the hippocampal neuron. J Comp Neurol. 2011;519:3684-99 pubmed 出版商
  55. O Brien B, Caldwell J, Ehring G, Bumsted O Brien K, Luo S, Levinson S. Tetrodotoxin-resistant voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 are expressed in the retina. J Comp Neurol. 2008;508:940-51 pubmed 出版商
  56. Hagiwara A, Fukazawa Y, Deguchi Tawarada M, Ohtsuka T, Shigemoto R. Differential distribution of release-related proteins in the hippocampal CA3 area as revealed by freeze-fracture replica labeling. J Comp Neurol. 2005;489:195-216 pubmed